

Welcome to the DOLfYN home page

DOLfYN is the Doppler Oceanography Library for pYthoN.

It is designed to read and work with Acoustic Doppler Velocimeter
(ADV) and Acoustic Doppler Profiler (ADP/ADCP) data. DOLfYN includes
libraries for reading binary Nortek(tm) and Teledyne-RDI(tm) data
files.

Please document any issues and submit feature requests via the DOLfYN
issues page [http://github.com/lkilcher/dolfyn/issues/].

Table of Contents

	About
	Instrument Support

	History

	License

	Installation
	Data Files and Test Files

	MATLAB Users

	Testing

	Dependencies

	The Basics
	Reading Source Datafiles

	Subsetting Data

	Data Analysis Tools

	The DOLfYN view

	Metadata
	DOLfYN Attributes

	Rotations & Coordinate Systems
	Orientation Data

	Heading, Pitch, Roll
	DOLfYN-Defined Heading, Pitch, Roll

	Instrument heading, pitch, roll

	Declination Handling

	Principal Heading

	Degree of testing by instrument type

	Motion Correction
	Pre-Deployment Requirements

	Specify metadata in a JSON file

	Data Processing

	Motion Correction Examples
	ADV Motion Correction Ex.1

	ADV Motion Correction Ex.2

	API Documentation
	ADCP Module
	Quick Example

	Cleaning Data
	set_range_offset()

	find_surface()

	find_surface_from_P()

	nan_beyond_surface()

	correlation_filter()

	medfilt_orient()

	val_exceeds_thresh()

	fillgaps_time()

	fillgaps_depth()

	ADV Module
	Quick Example

	Cleaning Data
	clean_fill()

	fill_nan_ensemble_mean()

	spike_thresh()

	range_limit()

	GN2002()

	CalcMotion
	CalcMotion.reshape()

	CalcMotion.calc_velacc()

	CalcMotion.calc_velrot()

	correct_motion()

	Reading and Loading Data
	read()

	read_example()

	save()

	load()

	save_mat()

	load_mat()

	Rotate Functions
	rotate2()

	calc_principal_heading()

	set_declination()

	set_inst2head_rotmat()

	euler2orient()

	orient2euler()

	quaternion2orient()

	calc_tilt()

	Binning Tools
	Velocity Analysis

	Turbulence Analysis
	TimeBinner
	TimeBinner.reshape()

	TimeBinner.detrend()

	TimeBinner.demean()

	TimeBinner.mean()

	TimeBinner.var()

	TimeBinner.std()

	TimeBinner.calc_psd_base()

	TimeBinner.calc_csd_base()

	TimeBinner.calc_freq()

	Velocity
	Velocity.rotate2()

	Velocity.set_declination()

	Velocity.set_inst2head_rotmat()

	Velocity.save()

	Velocity.variables

	Velocity.attrs

	Velocity.coords

	Velocity.u

	Velocity.v

	Velocity.w

	Velocity.U

	Velocity.U_mag

	Velocity.U_dir

	Velocity.E_coh

	Velocity.I_tke

	Velocity.I

	Velocity.tke

	Velocity.upvp_

	Velocity.upwp_

	Velocity.vpwp_

	Velocity.upup_

	Velocity.vpvp_

	Velocity.wpwp_

	VelBinner
	VelBinner.tke

	VelBinner.tau

	VelBinner.S

	VelBinner.C

	VelBinner.do_avg()

	VelBinner.do_var()

	VelBinner.calc_coh()

	VelBinner.calc_phase_angle()

	VelBinner.calc_acov()

	VelBinner.calc_xcov()

	VelBinner.calc_tke()

	VelBinner.calc_psd()

	ADVBinner
	ADVBinner.__call__()

	ADVBinner.calc_stress()

	ADVBinner.calc_csd()

	ADVBinner.calc_doppler_noise()

	ADVBinner.check_turbulence_cascade_slope()

	ADVBinner.calc_epsilon_LT83()

	ADVBinner.calc_epsilon_SF()

	ADVBinner.calc_epsilon_TE01()

	ADVBinner.calc_L_int()

	calc_turbulence()

	ADPBinner
	ADPBinner.calc_dudz()

	ADPBinner.calc_dvdz()

	ADPBinner.calc_dwdz()

	ADPBinner.calc_shear2()

	ADPBinner.calc_doppler_noise()

	ADPBinner.calc_stress_4beam()

	ADPBinner.calc_stress_5beam()

	ADPBinner.calc_total_tke()

	ADPBinner.check_turbulence_cascade_slope()

	ADPBinner.calc_dissipation_LT83()

	ADPBinner.calc_dissipation_SF()

	ADPBinner.calc_ustar_fit()

	Data Shortcuts (Properties)

	Time Conversion
	epoch2dt64()

	dt642epoch()

	date2dt64()

	dt642date()

	epoch2date()

	date2str()

	date2epoch()

	date2matlab()

	matlab2date()

	Tools
	psd_freq()

	stepsize()

	coherence()

	cpsd_quasisync()

	cpsd()

	psd()

	phase_angle()

	detrend()

	group()

	slice1d_along_axis()

	fillgaps()

	interpgaps()

	medfiltnan()

	convert_degrees()

Examples

	ADCP Example

	ADV Example

Indices

	Index

	Module Index

About

DOLfYN is a library of tools for reading, processing, and analyzing
data from oceanographic velocity measurement instruments such as
acoustic Doppler velocimeters (ADVs) and acoustic Doppler current profilers
(ADCPs). It includes tools to

	Read in raw ADCP/ADV datafiles

	QC velocity data

	Rotate vector data through coordinate systems (i.e. beam to instrument to Earth to principal frames of reference)

	Motion correction for ADV velocity measurements (via onboard IMU data)

	Bin/ensemble averaging

	Turbulence statistics for ADV data

Instrument Support

	Nortek:

	AWAC ADCP (current data only, waves in development)

	Signature AD2CP (current and waves)

	Vector ADV

	TRDI:

	Workhorse ADCPs (Monitor and Sentinel)

	WinRiver output files

	VMDAS output files

History

DOLfYN was originally created to provide open-source software for motion correction
and turbulence analysis of velocity data collected from ADVs mounted on compliant moorings.
It has since been expanded to include reading and analyzing ADCP data.

License

DOLfYN is released Apache License 2.0 (see the LICENSE.txt file in the
repository [http://github.com/lkilcher/dolfyn/]).

Installation

DOLfYN can be installed using pip:

$ pip install dolfyn

Or, if you would like download the source code locally so that you can modify
it, you can clone the repository and then use pip to install it as an ‘editable’ package:

$ git clone https://github.com/lkilcher/dolfyn.git
$ cd dolfyn
$ pip install -e .

Once installed, to create documentation (you may have to pip install sphinx_rtd_theme):

$ cd dolfyn/docs
$ make html

If you would like to contribute, please follow the guidelines in the contributing.md file.

Data Files and Test Files

DOLfYN has several moderately large (a few MB each) binary data files
included with the repo. These are example data files, and test-data
files used to confirm that the repository is functioning correctly. In
order to keep the size of the source repository minimal, these data
files are actually stored using GitHub’s git-lfs tools.

This means that if you want to be able to load these example data
files, or run the tests, you will need to install git-lfs [https://help.github.com/articles/installing-git-large-file-storage/]. If
you cloned the repository prior to installing git-lfs, run the command
git lfs fetch after installing git-lfs to pull the files.

MATLAB Users

For users who want to use DOLfYN’s file reading capabilities with minimal
Python scripting, the binary2mat.py [http://github.com/lkilcher/dolfyn/tree/master/scripts/binary2mat.py]
script can be used. So long as DOLfYN has been installed properly,
you can use this script from the command line in a directory which contains your
data files:

$ python binary2mat.py vector_data_imu01.vec

And DOLfYN will save the converted .mat file to your working directory,
where raw data is stored into a 2-layer MATLAB structure.

Testing

Currently all testing is housed in the tests/ folder (including the data files).
To run the tests, you’ll need to install pytest [https://docs.pytest.org/en/6.2.x/getting-started.html],
then open a command prompt and run:

$ python -m pytest

If any of the tests do not pass, first confirm that you have installed
all of the dependencies correctly, including git-lfs, then check to see if others are having a similar issue
before creating a new one [http://github.com/lkilcher/dolfyn/issues/].

Dependencies

DOLfYN was originally built upon the h5py package and has since been refactored
to build off xarray to make use of the netCDF data format. Support is upheld for
python 3.6 onward.

	NumPy [http://www.numpy.org] >=1.17.0

	SciPy [http://www.scipy.org]. >=1.5.0

	xarray [http://xarray.pydata.org/en/stable/] >= 1.17

	netCDF4 [https://pypi.org/project/netCDF4/] >= 1.5.7

The Basics

DOLfYN data objects are built on xarray DataArrays [http://xarray.pydata.org/en/stable/user-guide/data-structures.html]
combined into a single Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] with attributes, or info about the data.
Xarray can be thought of as a multidimensional extension of pandas, though it is not built on top of pandas. Datasets and DataArrays support all of the same basic functionality of dictionaries (e.g., indexing, iterating, etc.), with additional functionality that is designed to streamline the process of analyzing and working with data.

Reading Source Datafiles

To begin, we load the DOLfYN module and read a data file:

>> import dolfyn
>> dat = dolfyn.read(<path/to/my_data_file>)

DOLfYN’s read function supports reading Nortek and TRDI binary data files straight
from the ADCP or from the manufacturer’s processing software (e.g. TRDI’s WinADCP,
VMDAS, or WinRiver).

In an interactive shell, typing the variable name followed by enter/return will display information about the dataset, e.g.:

>> dat = dolfyn.read_example('AWAC_test01.wpr')
>> dat
<xarray.Dataset>
Dimensions: (range: 20, time: 9997, beam: 3, dir: 3, x*: 3, earth: 3, inst: 3)
Coordinates:
 * range (range) float32 1.41 2.41 3.41 ... 18.41 19.41 20.41
 * time (time) datetime64[ns] 2012-06-12T12:00:00 ... 2012-0...
 * beam (beam) int32 1 2 3
 * dir (dir) <U1 'E' 'N' 'U'
 * x* (x*) int32 1 2 3
 * earth (earth) <U1 'E' 'N' 'U'
 * inst (inst) <U1 'X' 'Y' 'Z'
Data variables:
 beam2inst_orientmat (beam, x*) float64 1.577 -0.7891 ... 0.3677 0.3677
 error (time) uint16 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
 batt (time) float32 13.6 13.6 13.6 13.6 ... 13.4 13.4 13.4
 c_sound (time) float32 1.489e+03 1.489e+03 ... 1.512e+03
 heading (time) float32 119.3 119.4 119.7 ... 128.7 128.9 129.0
 pitch (time) float32 6.55e+03 6.55e+03 ... 6.552e+03
 ...
 pressure (time) float32 16.03 16.01 16.02 ... 0.042 0.032 0.038
 status (time) float32 48.0 48.0 48.0 48.0 ... 48.0 48.0 48.0
 temp (time) float32 11.49 11.49 11.48 ... 18.72 18.72 18.72
 vel (dir, range, time) float64 -0.6648 -0.655 ... 0.645
 amp (beam, range, time) uint8 146 147 144 150 ... 25 25 25
 orientmat (earth, inst, time) float64 0.3026 0.2995 ... 0.3123
Attributes:
 config: {'ProLogID': 156, 'ProLogFWver': '4.06', 'conf...
 inst_make: Nortek
 inst_model: AWAC
 inst_type: ADCP
 SerialNum: WPR 1549
 Comments: AWAC on APL-UW Tidal Turbulence Mooring at Adm...
 ...
 has_imu: 0
 cell_size: 1.0
 blank_dist: 0.41
 latlon: [39.9402, -105.2283]
 declination: 8.28
 declination_in_orientmat: 1

This view reveals all the data stored within the xarray Dataset. There are four types of data displyed here: data variables, coordinates, dimensions and attributes.

	Data variables contain the main information stored as xarray DataArrays:

>> dat.vel
<xarray.DataArray 'vel' (dir: 3, range: 20, time: 9997)>
array([[[-0.66479734, -0.65496222, -0.69909159, ..., 1.90351055,
 1.94648366, 1.91131579],
 [-0.53663862, -0.56178903, -0.76993938, ..., 0.67961291,
 6.46099706, -0.3679769],
 [-0.63192198, -0.63142786, -0.52826604, ..., -0.0844491 ,
 2.69917045, -0.69253631],
 ...,
 [-0.90170625, -0.85587418, -0.48779671, ..., 3.71806074,
 0.63299628, 1.34105901],
 [-0.73322984, -0.66709612, -0.46033165, ..., -1.68639582,
 0.31451557, 2.93691549],
 [-0.90169828, -0.68338529, -0.57451738, ..., -2.77793829,
 2.43313374, -0.98629605]],
 ...
 [[-0.11800002, -0.06400001, 0.13500002, ..., 1.483 ,
 1.49100016, 1.50800014],
 [-0.17100002, -0.18900001, 0.029 , ..., 0.86300005,
 -0.95699996, 0.14500003],
 [-0.08900001, -0.21400001, 0.016 , ..., -1.54799992,
 1.6550002 , -0.82600006],
 ...,
 [0.05099999, -0.12099999, 0.22100003, ..., -0.78300005,
 0.7650001 , 0.164],
 [-0.05500002, -0.17199998, 0.152 , ..., -0.93699997,
 1.22200003, -0.87500013],
 [0.05099998, -0.146 , 0.16600001, ..., -1.09600008,
 0.49300008, 0.64500009]]])
Coordinates:
 * range (range) float32 1.41 2.41 3.41 4.41 ... 17.41 18.41 19.41 20.41
 * time (time) datetime64[ns] 2012-06-12T12:00:00 ... 2012-06-12T14:46:36
 * dir (dir) <U1 'E' 'N' 'U'
Attributes:
 units: m/s

	Coordinates are arrays that contain the indices/labels/values of the data variables’ dimensions, e.g. time, latitude, or longitude:

>> dat.time
<xarray.DataArray 'time' (time: 9997)>
array(['2012-06-12T12:00:00.000000000', '2012-06-12T12:00:01.000000000',
 '2012-06-12T12:00:02.000000000', ..., '2012-06-12T14:46:34.000000000',
 '2012-06-12T14:46:35.000000000', '2012-06-12T14:46:36.000000000'],
 dtype='datetime64[ns]')
Coordinates:
 * time (time) datetime64[ns] 2012-06-12T12:00:00 ... 2012-06-12T14:46:36

	Dimensions are simply the names of the coordinate arrays

	Attributes can be thought of as comments, or information that provides insight into the data variables, and must be floats, strings or arrays. DOLfYN uses attributes to store information on coordinate rotations.

Data variables and coordinates can be accessed using dict-style syntax, or attribute-style syntax. For example:

>> dat['range']
<xarray.DataArray 'range' (range: 20)>
array([1.41, 2.41, 3.41, 4.41, 5.41, 6.41, 7.41, 8.41, 9.41, 10.41,
 11.41, 12.41, 13.41, 14.41, 15.41, 16.41, 17.41, 18.41, 19.41, 20.41],
 dtype=float32)
Coordinates:
 * range (range) float32 1.41 2.41 3.41 4.41 ... 17.41 18.41 19.41 20.41
Attributes:
 units: m

>> dat.amp[0]
<xarray.DataArray 'amp' (range: 20, time: 9997)>
array([[146, 147, 144, ..., 38, 38, 38],
 [136, 135, 136, ..., 25, 25, 25],
 [130, 129, 132, ..., 25, 24, 25],
 ...,
 [89, 96, 88, ..., 23, 22, 23],
 [77, 82, 84, ..., 23, 23, 23],
 [61, 49, 58, ..., 23, 22, 23]], dtype=uint8)
Coordinates:
* range (range) float32 1.41 2.41 3.41 4.41 ... 17.41 18.41 19.41 20.41
* time (time) datetime64[ns] 2012-06-12T12:00:00 ... 2012-06-12T14:46:36
 beam int32 1
Attributes:
 units: counts

Dataset/DataArray attributes can be accessed as follows:

>> dat.blank_dist
0.41

>> dat.attrs['fs']
1.0

Note here that the display information includes the size of each array, it’s coordinates and attributes. Active DataArray coordinates are signified with a ‘*’. The units of most variables are in the MKS system (e.g., velocity is in m/s), and angles are in degrees. Units are saved in relevant DataArrays as attributes; see the Metadata section for a complete list of the units of DOLfYN variables.

Subsetting Data

Xarray has its own built-in methods for selecting data [http://xarray.pydata.org/en/stable/user-guide/indexing.html].

A section of data can be extracted to a new Dataset or DataArray using .isel, .sel and/or with python’s built-in slice function, for example:

Returns a new DataArray containing data from 0 to 5 m.
>> datsub = dat.vel.sel(range=slice(0,5))

Returns velocity in 'streamwise' direction
>> datsub = dat.vel.sel(orient='streamwise')

Returns a new DataArray with the first 1000 indices (timesteps) from the original DataArray
>> datsub = dat.vel.isel(time=slice(0,1000))

Data Analysis Tools

Analysis in DOLfYN is primarily set up to work through two API’s (Advanced Programming Interfaces): the ADCP Module and the ADV Module, each of which contain functions that pertain to ADCP and ADV instruments, respectively. Functions and classes that pertain to both can be accessed from the main package import. See the DOLfYN API for further detail.

The DOLfYN view

In addition to working with xarray datasets directly, as described above DOLfYN also provides an alternate DOLfYN view into the data. This is accessed by:

>> dat_dolfyn = dat.velds

This view has several convenience methods, shortcuts, and functions
built-in. It includes an alternate – and somewhat more
informative/compact – description of the data object when in
interactive mode:

>> dat_dolfyn
<ADCP data object>: Nortek AWAC
 . 2.78 hours (started: Jun 12, 2012 12:00)
 . earth-frame
 . (9997 pings @ 1.0Hz)
 Variables:
 - time ('time',)
 - vel ('dir', 'range', 'time')
 - range ('range',)
 - orientmat ('earth', 'inst', 'time')
 - heading ('time',)
 - pitch ('time',)
 - roll ('time',)
 - temp ('time',)
 - pressure ('time',)
 - amp ('beam', 'range', 'time')
 ... and others (see `<obj>.variables`)

The variables in the dataset can be accessed using standard dictionary (key/item) syntax:

>> dat_dolfyn['time']
<xarray.DataArray 'time' (time: 9997)>
array(['2012-06-12T12:00:00.000000000', '2012-06-12T12:00:01.000000000',
 '2012-06-12T12:00:02.000000000', ..., '2012-06-12T14:46:34.000000000',
 '2012-06-12T14:46:35.000000000', '2012-06-12T14:46:36.000000000'],
 dtype='datetime64[ns]')
Coordinates:
 * time (time) datetime64[ns] 2012-06-12T12:00:00 ... 2012-06-12T14:46:36

But trying to accessing variables using attribute syntax
(dat_dolfyn.time) is not supported (returns
AttributeError). However, we do include several shortcuts that
utilize attribute syntax. The full list of dolfyn-view convenience
methods and properties/shortcuts can be found in
dolfyn.velocity.Velocity.

Metadata

DOLfYN generally uses the *MKS* system [https://en.wikipedia.org/wiki/MKS_system_of_units]. Common variables and units are listed in Table 1:

Table 1 : The units of common variables found in DOLfYN data objects.

	Name

	Units

	Description/Notes

	time

	sec since 1970/01/01 00:00:00

	Time data (unaware of timezone)

	vel

	m/s

	Velocity vector data

	range

	m

	Distance from the instrument’s transducer head(s)

	depth

	m

	Instrument depth

	c_sound

	m/s

	Speed of sound used in velocity calculations

	press / pressure

	dbar

	Pressure measured by the instrument

	temp

	deg C

	Temperature measured by the instrument

	accel

	m/s2

	Vector acceleraton of the instrument

	angrt

	rad/s

	Angular rotation rate of the instrument

	mag

	mG or nT

	Magnetometer data

	velraw

	m/s

	Velocity without motion-correction

	velrot

	m/s

	Rotational motion velocity (computed from angrt)

	velacc

	m/s

	Translational motion velocity (computed from accel)

	acclow

	m/s2

	Low-pass filtered acceleration signal

	heading

	deg

	Instrument heading* (clockwise from North)

	pitch

	deg

	Instrument pitch*

	roll

	deg

	Instrument roll*

	orientmat

	—

	earth to instrument orientation matrix

	amp

	dB or counts

	Measured sound level amplitude

	corr

	% or counts

	Correlation between the sent and received pings.

	ambig_vel

	m/s

	Ambiguity velocity

	ensemble

	—

	Ensemble counter

	error

	—

	Instrument error code

	status

	—

	Instrument status code

	tke_vec

	m2/s2

	Variance of velocity components (0: u’u’, 1: v’v’, 2: w’w’)

	stress_vec

	m2/s2

	Reynolds stress array (0: u’v’, 1: u’w’, 2: v’w’)

	U_mag

	m/s

	Horizontal velocity magnitude

	U_std

	m/s

	Standard deviation of horizontal velocity magnitude

	epsilon

	m2/s3

	Turbulence dissipation rate

	psd

	<var units>2/<freq units>

	Spectra, calculated as power spectral densities

	f

	Hz

	Spectral frequency

	omega

	rad/s

	Spectral radial frequency

DOLfYN Attributes

The attrs data-group of xarray Datasets is a place for
user-specified meta-data and DOLfYN-specific implementation data. The
most common variables found here are described in Table 2.

Table 2 The entries in dat.attrs that are used in DOLfYN.

	Name

	Description/Notes

	fs*

	This is the sample rate of the instrument [Hz]

	coord_sys*

	The coordinate system of the data object. When a data object is rotated to a new coordinate system using the dat.velds.rotate2() method, the value of dat.attrs['coord_sys'] is updated to reflect the final coordinate system. Valid values are: beam, inst, earth, and principal. For further details on these coordinate systems see the Rotations & Coordinate Systems section.

	rotate_vars*

	The variables in the data object that should be rotated when rotating the data object.

	declination**

	The magnetic declination where the measurements were made (in degrees that magnetic North is right of True North). Set this value using dat.velds.set_declination(<value>).

	declination_in_orientmat*

	A boolean specifying whether the dat.orientmat includes the declination. If this is True, then the earth coordinate system is True (i.e., v is velocity toward True North).

	principal_heading

	The heading of the +u direction for the ‘principal’ coordinate system [degrees clockwise from north].

	has_imu*

	A boolean indicating whether the instrument has an IMU (inertial measurement unit) or AHRS (attitude heading reference system).

	inst_make*

	The manufacturer name.

	inst_model*

	The instrument model.

	DutyCycle_NBurst*

	The number of pings in a burst.

	DutyCycle_NCycle*

	The time – in number of pings – before the next burst starts. (this may be incorrect for some instrument types, please report issues [http://github.com/lkilcher/dolfyn/issues/])

	inst2head_vec

	The vector from the center of the ADV inst reference frame to the center of the head’s reference frame, in coordinates of the inst reference frame. It must be specified in order to perform motion correction. For ADPs this is always zero because the two coordinate systems are centered at the same place.

	inst2head_rotmat**

	The rotation matrix that rotates vectors from the instrument reference-frame to the head reference-frame. For ADCPs this is always the identity matrix. Valid values are: 3-by-3 valid rotation matrices, or: 'eye', 'identity', or 1 all of which specify that it is the identity matrix. This is typically used for cable-head ADVs where the ADV head is not oriented the same as the ADV pressure case. It must be specified in order to perform motion correction.

	motion accel_filtfreq Hz

	The filter-frequency for the computing translational motion from the acceleration signal of an IMU. This is only used for motion correction. This high-pass filter is applied prior to integrating acceleration. This value is only used if when accel_filtfreq is not explicitly specified when motion-correcting

	motion vel_filtfreq Hz

	The filter-frequency for the computing translational motion from the acceleration signal of an IMU. This is only used for motion correction. This high-pass filter is applied after integrating acceleration. This value is only used if when vel_filtfreq is not explicitly specified when motion-correcting.

	latlon†

	The location of the measurements in decimal degrees. Latitude is positive North of the equator, longitude is positive west of the prime-meridian.

*: These entries are set and controlled by DOLfYN, and are not meant
to be modified directly by the user.

**: These entries are set and controlled via
dat.set_<property name> methods.

†: These entries are not used or set by DOLfYN, but they are
useful measurement meta-data and are listed here to assist in
standardizing the location and format of this information.

Rotations & Coordinate Systems

One of DOLfYN‘s primary advantages is that it contains tools
for managing the coordinate system (a.k.a. the reference frame) of
tensor data. The coordinate-system/rotation tools provided in
DOLfYN have been tested to varying degrees on different types of
instruments and configurations. See the table at the bottom of this page for details on the
degree of testing of DOLfYN‘s rotations and coordinate-system tools
that has occurred for several instrument types. With your help, we
hope to improve our confidence in these tools for the wide-array of
instruments and configurations that exist.

The values in the list dat.attrs['rotate_vars'] specifies the
vectors that are rotated when changing between different coordinate
systems. The first dimension of these vectors are their coordinate
directions, which are defined by the following coordinate systems:

	Beam: this is the coordinate system of the ‘along-beam’
velocities. When the data object is in ‘beam’ coordinates, the first
dimension of the velocity vectors are: [beam1, beam2,
… beamN]. This coordinate system is not ortho-normal, which
means that the inverse rotation (inst to beam) cannot be computed
using the transpose of the beam-to-inst rotation matrix. Instead,
the inverse of the matrix must be computed explicitly, which is done
internally in DOLfYN (in beam2inst()).

When a data object is in this coordinate system, only the velocity
data (i.e., the variables in dat.attrs['rotate_vars'] starting
with 'vel') is in beam coordinates. Other vector variables
listed in 'rotate_vars' are in the ‘inst’ frame (e.g.,
dat.angrt). This is true for data read from binary files
that is in beam coordinates, and also when rotating from other
coordinate systems to beam coordinates.

	Inst: this is the ‘instrument’ coordinate system defined by the
manufacturer. This coordinate system is ortho-normal, but is not
necessarily fixed. That is, if the instrument is rotating, then this
coordinate system changes relative to the earth. When the data
object is in ‘inst’ coordinates, the first dimension of the vectors
are: [X, Y, Z, …].

	Earth: When the data object is in ‘earth’ coordinates, the first
dimension of vectors are: [East, North, Up, …]. This coordinate
system is also sometimes denoted as “ENU”. If the declination is set
the earth coordinate system is “True-East, True-North, Up”
otherwise, East and North are magnetic. See the Declination
Handling section for further details on setting declination.

Note that the ENU definition used here is different from the ‘North,
East, Down’ local coordinate system typically used by aircraft.
Also note that the earth coordinate system is a ‘rotationally-fixed’
coordinate system: it does not rotate, but it is not necessarily
inertial or stationary if the instrument slides around
translationally (see the Motion Correction section for
details on how to correct for translational motion).

	Principal: the principal coordinate system is a fixed coordinate
system that has been rotated in the horizontal plane (around the Up
axis) to align with the flow. In this coordinate system the first
dimension of a vector is meant to be: [Stream-wise, Cross-stream,
Up]. This coordinate system is defined by the variable
dat.attrs['principal_heading'], which specifies the
principal coordinate system’s \(+u\) direction. The
\(v\) direction is then defined by the right-hand-rule (with
\(w\) up). See the Principal Heading section for further
details.

To rotate a data object into one of these coordinate systems, simply
use the rotate2 method:

>> dat = dolfyn.read_example('vector_data_imu01.VEC')
>> dolfyn.rotate2(dat, 'earth')
>> dat
<xarray.Dataset>
Dimensions: (time: 27043, dir: 3, beam: 3, x*: 3, earth: 3, inst: 3, dirIMU: 3)
Coordinates:
 * time (time) datetime64[ns] 2012-06-12T12:00:02.681046
 * dir (dir) <U1 'E' 'N' 'U'
 * beam (beam) int32 1 2 3
 * x* (x*) int32 1 2 3
 * earth (earth) <U1 'E' 'N' 'U'
 * inst (inst) <U1 'X' 'Y' 'Z'
 * dirIMU (dirIMU) <U1 'E' 'N' 'U'
Data variables: (12/18)
 beam2inst_orientmat (beam, x*) float64 2.74 -1.384 -1.354 ... 0.3489 0.3413
 batt (time) float32 11.3 11.3 11.3 11.3 ... 10.8 10.8 10.8
 c_sound (time) float32 1.491e+03 1.491e+03 ... 1.486e+03
 heading (time) float32 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
 pitch (time) float32 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
 roll (time) float32 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
 ...
 accel (dir, time) float32 -0.03771 0.01074 ... 9.796 9.788
 angrt (dir, time) float32 -0.006857 -0.004057 ... 0.1279
 mag (dir, time) float32 0.001869 0.001455 ... -0.5543
 orientmat (earth, inst, time) float32 0.7867 0.7819 ... -0.9979
 orientation_down (time) bool False False False ... False False False
 pressure (time) float64 198.6 198.6 198.6 ... 623.2 623.2 623.2
Attributes:
 config: {'ProLogID': 187, 'ProLogFWver': '4.12', 'config': 15412, '...
 inst_make: Nortek
 inst_model: Vector
 inst_type: ADV
 rotate_vars: ['vel', 'accel', 'angrt', 'mag']
 freq: 6000
 SerialNum: VEC 9625
 Comments: NREL Vector with INS on APL-UW Tidal Turbulence Mooring in ...
 fs: 32.0
 coord_sys: earth
 has_imu: 1

Orientation Data

The instrument orientation data in DOLfYN data objects is contained in
orientmat and beam2inst_orientmat. The orientmat data item
is the earth2inst orientation matrix, \(R\), of the instrument in the earth
reference frame. It is a 3x3xNt array, where each 3x3 array is the rotation matrix [http://en.wikipedia.org/wiki/Rotation_matrix] that rotates vectors
in the earth frame, \(v_e\), into the instrument coordinate system,
\(v_i\), at each timestep:

\[v_i = R \cdot v_e\]

The ENU definitions of coordinate systems means that the rows of
\(R\) are the unit-vectors of the XYZ coordinate system in the ENU
reference frame, and the columns are the unit vectors of the ENU
coordinate system in the XYZ reference frame. That is, for this kind
of simple rotation matrix between two orthogonal coordinate systems,
the inverse rotation matrix is simply the transpose:

\[v_e = R^T \cdot v_i\]

Heading, Pitch, Roll

Most instruments do not calculate or output the orientation
matrix by default. Instead, these instruments typically provide
heading, pitch, and roll data (hereafter, h,p,r). Instruments that provide an orientmat directly will contain dat.attrs['has_imu'] = 1. Otherwise, the orientmat was calculated from h,p,r.

Note that an orientation matrix calculated
from h,p,r can have larger error associated with it, partly because
of the gimbal lock [https://en.wikipedia.org/wiki/Gimbal_lock]
problem, and also because the accuracy of some h,p,r sensors
decreases for large pitch or roll angles (e.g., >40 degrees).

Because the definitions of h,p,r are not consistent between
instrument makes/models, and because DOLfYN-developers have chosen
to utilize consistent definitions of orientation data (orientmat,
and h,p,r), the following things are true:

	DOLfYN uses instrument-specific functions to calculate a
consistent orientmat from the inconsistent
definitions of h,p,r

	DOLfYN‘s consistent definitions h,p,r are generally different
from the definitions provided by an instrument manufacturer (i.e.,
there is no consensus on these definitions, so DOLfYN developers
have chosen one)

Varying degrees of validation have been performed to confirm that the
orientmat is being calculated correctly for each instrument’s
definitions of h,p,r. See the the table at the bottom of this page for details on
this. If your instrument has low confidence, or you suspect an error
in rotating data into the earth coordinate system, and you have
interest in doing the work to fix this, please reach out to us
by filing an issue.

DOLfYN-Defined Heading, Pitch, Roll

The DOLfYN-defined h,p,r variables can be calculated using the
dolfyn.orient2euler() function (dolfyn.euler2orient()
provides the reverse functionality). This function computes these
variables according to the following conventions:

	a “ZYX” rotation order. That is, these variables are computed
assuming that rotation from the earth -> instrument frame happens
by rotating around the z-axis first (heading), then rotating
around the y-axis (pitch), then rotating around the x-axis (roll).

	heading is defined as the direction the x-axis points, positive
clockwise from North (this is opposite the right-hand-rule
around the Z-axis)

	pitch is positive when the x-axis pitches up (this is opposite the
right-hand-rule around the Y-axis)

	roll is positive according to the right-hand-rule around the
instrument’s x-axis

Instrument heading, pitch, roll

The raw h,p,r data as defined by the instrument manufacturer is
available in dat.data_vars. Note that this data does not
obey the above definitions, and instead obeys the instrument
manufacturer’s definitions of these variables (i.e., it is exactly the
data contained in the binary file). Also note that dat['heading']
is unaffected by setting declination as described in the next section.

Declination Handling

DOLfYN includes functionality for handling declination [https://www.ngdc.noaa.gov/geomag/declination.shtml], but the value
of the declination must be specified by the user. There are two ways
to set a data-object’s declination:

	Set declination explicitly using the set_declination
method, for example:

dolfyn.set_declination(dat, 16.53)

	Set declination in the <data_filename>.userdata.json file
(more details), then read the binary data
file (i.e., using dat = dolfyn.read(<data_filename>)).

Both of these approaches produce modify the dat as described in
the documentation for set_declination() .

Principal Heading

As described above, the principal coordinate system is meant to be the
flow-aligned coordinate system (Streamwise, Cross-stream, Up). DOLfYN
includes the calc_principal_heading() function to aide in
identifying/calculating the principal heading. Using this function to
identify the principal heading, an ADV data object that is in the
earth-frame can be rotated into the principal coordinate system like
this:

dat.attrs['principal_heading'] = dolfyn.calc_principal_heading(dat.vel)
dat.rotate2('principal')

Note here that if dat is in a coordinate system other than EARTH,
you will get unexpected results, because you will calculate a
principal_heading in the coordinate system that the data is in.

It should also be noted that by setting
dat.attrs['principal_heading'] the user can choose any horizontal
coordinate system, and this might not be consistent with the
streamwise, cross-stream, up definition described here. In those
cases, the user should take care to clarify this point with
collaborators to avoid confusion.

Degree of testing by instrument type

The table below details the degree of testing of the rotation,
p,r,h, and coordinate-system tools contained in DOLfYN. The
confidence column provides a general indication of the level of
confidence that we have in these tools for each instrument.

If you encounter unexpected results that seem to be
related to coordinate systems (especially for instruments and
configurations that are listed as “low” or “medium” confidence), the
best thing to do is file an issue [http://github.com/lkilcher/dolfyn/issues/].

Table 3 Table 1: Instruments tested to be consistent with
DOLfYN‘s coordinate systems and rotation tools.

	Make

	Series

	Config

	Confidence

	Notes

	Nortek

	Vector

	modern (~2019) firmware

	Medium

	“Some direct “instrument on the desk” confirmation of orientation-matrix and p,r,h calcs.”

	Nortek

	Vector

	with IMU, modern (2019) firmware

	High

	“Lots of direct ‘instrument on the desk’ confirmation of orientation-matrix and p,r,h calcs.”

	Nortek

	AWAC

	modern (~2019) firmware

	Low

	“This works, but there has been almost no testing to validate results”

	Nortek

	Signature

	modern (~2019) firmware

	High

	“Lots of direct ‘instrument on the desk’ confirmation of orientation-matrix and p,r,h calcs.”

	Nortek

	Signature

	with IMU, modern (2019) firmware

	Medium

	“Some validation by reasonable results when working with data.”

	Teledyne RDI

	Workhorse

	modern (~2019-ish) firmware

	Medium

	“Some cross-validation with other sensors in post-processing, but minimal ‘instrument on the desk’ testing.”

	ALL

	ALL

	External input orientation data

	NONE

	“There has been no testing of external heading, pitch, or roll inputs”

Motion Correction

The Nortek Vector ADV can be purchased with an Inertial Motion Unit
(IMU) that measures the ADV motion. These measurements can be used to
remove motion from ADV velocity measurements when the ADV is mounted
on a moving platform (e.g. a mooring). This approach has been found to
be effective for removing high-frequency motion from ADV measurements,
but cannot remove low-frequency (\(\lesssim\) 0.03Hz) motion
because of bias-drift inherent in IMU accelerometer sensors that
contaminates motion estimates at those frequencies.

This documentation is designed to document the methods for performing
motion correction of ADV-IMU measurements. The accuracy and
applicability of these measurements is beyond the scope of this
documentation (see [Harding_etal_2017], [Kilcher_etal_2017]).

Nortek’s Signature ADCP’s are now also available with an Altitude
and Heading Reference System (AHRS), but DOLfYN does not yet support motion
correction of ADCP data.

Pre-Deployment Requirements

In order to perform motion correction the ADV-IMU must be assembled
and configured correctly:

	The ADV head must be rigidly connected to the ADV pressure case.

	The ADV software must be configured properly. In the ‘Deployment
Planning’ frame of the Vector Nortek Software, be sure that:

	The IMU sensor is enabled (checkbox) and set to record ‘dAng dVel Orient’.

	The ‘Coordinate system’ must be set to ‘XYZ’.

	It is recommended to set the ADV velocity range to ± 4 m/s,
or larger.

	For cable-head ADVs be sure to record the position and orientation
of the ADV head relative to the ADV pressure case ‘inst’ coordinate
system (Figure 1). This information is specified in terms of the
following variables:

	inst2head_rotmat
	The rotation matrix (a 3-by-3 array) that rotates vectors in the
‘inst’ coordinate system, to the ADV
‘head’ coordinate system. For fixed-head ADVs this is the identity
matrix, but for cable-head ADVs it is an arbitrary unimodular
(determinant of 1) matrix. This property must be in
dat.data_vars in order to do motion correction.

	inst2head_vec
	The 3-element vector that specifies the position of the ADV head in
the inst coordinate system (IMU coordinate system, Figure 1). This
property must be in dat.attrs in order to do motion correction.

	These variables are set in either the userdata.json file (prior to calling
	dolfyn.read), or by setting them explicitly after the data file has been
read:

dat.velds.set_inst2head_rotmat(<3x3 rotation matrix>)
dat.attrs['inst2head_vec'] = np.array([3-element vector])

[image: ADV head and inst coordinate systems.]

Figure 1 The ADV ‘inst’ (yellow) and head (magenta) coordinate
systems. The \(\hat{x}^\mathrm{head}\) -direction is known by
the black-band around the transducer arm, and the
\(\hat{x}^*\) -direction is marked by a notch on the end-cap
(indiscernible in the image). The cyan arrow indicates the
inst2head_vec vector \(\vec{\ell}_{head}^*\) . The perspective
slightly distorts the fact that \(\hat{x}^\mathrm{head}
\parallel - \hat{z}^*\) , \(\hat{y}^\mathrm{head} \parallel
-\hat{y}^*\) , and \(\hat{z}^\mathrm{head} \parallel
-\hat{x}^*\) .

Specify metadata in a JSON file

The values in dat.attrs can also be set in a json file,
<data_filename>.userdata.json, containing a single json-object [https://json.org/]. For example, the contents of these files should
look something like:

{"inst2head_rotmat": "identity",
 "inst2head_vec": [-1.0, 0.5, 0.2],
 "motion accel_filtfreq Hz": 0.03,
 "declination": 8.28,
 "latlon": [39.9402, -105.2283]
}

Prior to reading a binary data file my_data.VEC, you can
create a my_data.userdata.json file. Then when you do
dolfyn.read('my_data.VEC'), DOLfYN will read the contents of
my_data.userdata.json and include that information in the
dat.attrs attribute of the returned data object. This
feature is provided so that meta-data can live alongside your
binary data files.

[image: ADV mounted on a Columbus-type sounding weight.]

Figure 2 ADV mounted on a Columbus-type sounding weight.

The ‘userdata.json’ file corresponding to the ADV sounding weight in Figure 2 looks like:

{"inst2head_rotmat": [[0, 0,-1],
 [0, 1, 0],
 [1, 0, 0]],
 "inst2head_vec": [0.04, 0, 0.20],
 "motion accel_filtfreq Hz": 0.03,
}

Data Processing

After making ADV-IMU measurements, the DOLfYN package can perform
motion correction processing steps on the ADV data. Assuming you have
created a vector_data_imu.userdata.json file
(to go with your vector_data_imu.vec data file), motion
correction is fairly simple. You can either:

	Utilize the DOLfYN API to perform motion-correction explicitly in Python:

import dolfyn.adv.api as avm

	Load your data file, for example:

dat = avm.read('vector_data_imu01.vec')

	Then perform motion correction:

avm.correct_motion(dat, accel_filtfreq=0.1) # specify the filter frequency in Hz.

	For users who want to perform motion correction with minimal Python
scripting, the motcorrect_vector.py [http://github.com/lkilcher/dolfyn/tree/master/scripts/motcorrect_vector.py]
script can be used. So long as DOLfYN has been installed properly,
you can use this script from the command line in a directory which contains your
data files:

$ python motcorrect_vector.py vector_data_imu01.vec

By default this will write a Matlab file containing your
motion-corrected ADV data in ENU coordinates. Note that for
fixed-head ADVs (no cable b/t head and battery case), the standard values for
inst2head_rotmat and inst2head_vec can be specified by
using the --fixed-head command-line parameter:

$ python motcorrect_vector.py --fixed-head vector_data_imu01.vec

Otherwise, these parameters should be specified in the
.userdata.json file, as described above.

The motcorrect_vector.py script also allows the user to specify the
accel_filtfreq using the -f flag. Therefore, to use a
filter frequency of 0.1Hz (as opposed to the default 0.033Hz), you
could do:

$ python motcorrect_vector.py -f 0.1 vector_data_imu01.vec

It is also possible to do motion correction of multiple data files
at once, for example:

$ python motcorrect_vector.py vector_data_imu01.vec vector_data_imu02.vec

In all of these cases the script will perform motion correction on
the specified file and save the data in ENU coordinates, in Matlab
format. Happy motion-correcting!

After following one of these paths, your data will be motion corrected and its .u,
.v and .w attributes are in an East, North and Up (ENU)
coordinate system, respectively. In fact, all vector quantities
in dat are now in this ENU coordinate system. See the
documentation of the correct_motion()
function for more information.

A key input parameter of motion-correction is the high-pass filter
frequency that removes low-frequency bias drift from the IMU
accelerometer signal (the default value is 0.03 Hz, a ~30 second
period). For more details on choosing the appropriate value for
a particular application, please see [Kilcher_etal_2016].

[Kilcher_etal_2016]
Kilcher, L.; Thomson, J.; Talbert, J.; DeKlerk, A.; 2016,
“Measuring Turbulence from Moored Acoustic
Doppler Velocimeters” National Renewable Energy
Lab, Report Number 62979 [http://www.nrel.gov/docs/fy16osti/62979.pdf].

[Harding_etal_2017]
Harding, S., Kilcher, L., Thomson, J. (2017).
Turbulence Measurements from Compliant Moorings. Part I: Motion Characterization.
Journal of Atmospheric and Oceanic Technology, 34(6), 1235-1247.
doi: 10.1175/JTECH-D-16-0189.1

[Kilcher_etal_2017]
Kilcher, L., Thomson, J., Harding, S., & Nylund, S. (2017).
Turbulence Measurements from Compliant Moorings. Part II: Motion Correction.
Journal of Atmospheric and Oceanic Technology, 34(6), 1249-1266.
doi: 10.1175/JTECH-D-16-0213.1

Motion Correction Examples

The two following examples depict the standard workflow for analyzing
ADV-IMU data using DOLfYN.

ADV Motion Correction Ex.1

To get started first import the DOLfYN ADV advanced programming
interface (API):
import dolfyn.adv.api as api
from dolfyn import time

Import matplotlib tools for plotting the data:
from matplotlib import pyplot as plt
import matplotlib.dates as dt
from datetime import datetime
import numpy as np

##############################
User input and customization

The file to load:
fname = '../../dolfyn/example_data/vector_data_imu01.vec'

This is the vector from the ADV head to the instrument frame, in meters,
in the ADV coordinate system.
inst2head_vec = np.array([0.48, -0.07, -0.27])

This is the orientation matrix of the ADV head relative to the body
(battery case).
In this case the head was aligned with the body, so it is the
identity matrix:
inst2head_rotmat = np.eye(3)

The time range of interest.
The instrument was in place on the seafloor starting at 12:08:30 on June 12, 2012.
t_range = [time.date2dt64(datetime(2012, 6, 12, 12, 8, 30)),
 # The data is good to the end of the file.
 time.date2dt64(datetime(2012, 6, 13))]

This is the filter to use for motion correction:
accel_filter = 0.1

End user input section.
###############################

Read a file containing adv data:
dat_raw = api.read(fname, userdata=False)

Crop the data for t_range
t_range_inds = (t_range[0] < dat_raw.time) & (dat_raw.time < t_range[1])
dat = dat_raw.isel(time=t_range_inds)

Set the inst2head rotation matrix and vector
api.set_inst2head_rotmat(dat, inst2head_rotmat)
dat.attrs['inst2head_vec'] = inst2head_vec

Then clean the file using the Goring+Nikora method:
mask = api.clean.GN2002(dat.vel)
dat['vel'] = api.clean.clean_fill(dat.vel, mask, method='cubic')

####
Create a figure for comparing screened data to the original.
fig = plt.figure(1, figsize=[8, 4])
fig.clf()
ax = fig.add_axes([.14, .14, .8, .74])

Plot the raw (unscreened) data:
ax.plot(dat_raw.time, dat_raw.velds.u, 'r-', rasterized=True)

Plot the screened data:
ax.plot(dat.time, dat.velds.u, 'g-', rasterized=True)
bads = np.abs(dat.velds.u - dat_raw.velds.u.isel(time=t_range_inds))
ax.text(0.55, 0.95,
 "%0.2f%% of the data were 'cleaned'\nby the Goring and Nikora method."
 % (float(sum(bads > 0)) / len(bads) * 100),
 transform=ax.transAxes,
 va='top',
 ha='left')

Add some annotations:
text0 = dt.date2num(datetime(2012, 6, 12, 12, 8, 30))
ax.axvspan(dt.date2num(datetime(2012, 6, 12, 12)),
 text0, zorder=-10, facecolor='0.9',
 edgecolor='none')
ax.text(0.13, 0.9, 'Mooring falling\ntoward seafloor',
 ha='center', va='top', transform=ax.transAxes,
 size='small')
ax.text(text0 + 0.0001, 0.6, 'Mooring on seafloor',
 size='small',
 ha='left')
ax.annotate('', (text0 + 0.006, 0.3),
 (text0, 0.3),
 arrowprops=dict(facecolor='black', shrink=0.0),
 ha='right')

Finalize the figure
Format the time axis:
tkr = dt.MinuteLocator(interval=5)
frmt = dt.DateFormatter('%H:%M')
ax.xaxis.set_major_locator(tkr)
ax.xaxis.set_minor_locator(dt.MinuteLocator(interval=1))
ax.xaxis.set_major_formatter(frmt)
ax.set_ylim([-3, 3])

Label the axes:
ax.set_ylabel('$u\,\mathrm{[m/s]}$', size='large')
ax.set_xlabel('Time [June 12, 2012]')
ax.set_title('Data cropping and cleaning')
ax.set_xlim([dt.date2num(datetime(2012, 6, 12, 12)),
 dt.date2num(datetime(2012, 6, 12, 12, 30))])
####

dat_cln = dat.copy(deep=True)

Perform motion correction (including rotation into earth frame):
dat = api.correct_motion(dat, accel_filter)

Rotate the uncorrected data into the earth frame,
for comparison to motion correction:
api.rotate2(dat_cln, 'earth')

Then rotate it into a 'principal axes frame':
dat.attrs['principal_heading'] = api.calc_principal_heading(dat.vel)
dat_cln.attrs['principal_heading'] = api.calc_principal_heading(dat_cln.vel)
api.rotate2(dat, 'principal')
api.rotate2(dat_cln, 'principal')

Average the data and compute turbulence statistics
dat_bin = api.calc_turbulence(dat, n_bin=9600, fs=dat.fs, n_fft=4096)
dat_cln_bin = api.calc_turbulence(
 dat_cln, n_bin=9600, fs=dat_cln.fs, n_fft=4096)

####
Figure to look at spectra
fig2 = plt.figure(2, figsize=[6, 6])
fig2.clf()
ax = fig2.add_axes([.14, .14, .8, .74])

ax.loglog(dat_bin.freq, dat_bin['psd'].sel(S='Sxx').mean(axis=0),
 'b-', label='motion corrected')
ax.loglog(dat_cln_bin.freq, dat_cln_bin['psd'].sel(S='Sxx').mean(axis=0),
 'r-', label='no motion correction')

Add some annotations
ax.axhline(1.7e-4, color='k', zorder=21)
ax.text(2e-3, 1.7e-4, 'Doppler noise level', va='bottom', ha='left',)

ax.text(1, 2e-2, 'Motion\nCorrection')
ax.annotate('', (3.6e-1, 3e-3), (1, 2e-2),
 arrowprops={'arrowstyle': 'fancy',
 'connectionstyle': 'arc3,rad=0.2',
 'facecolor': '0.8',
 'edgecolor': '0.6'},
 ha='center')

ax.annotate('', (1.6e-1, 7e-3), (1, 2e-2),
 arrowprops={'arrowstyle': 'fancy',
 'connectionstyle': 'arc3,rad=0.2',
 'facecolor': '0.8',
 'edgecolor': '0.6'},
 ha='center')

Finalize the figure
ax.set_xlim([1e-3, 20])
ax.set_ylim([1e-4, 1])
ax.set_xlabel('frequency [hz]')
ax.set_ylabel('$\mathrm{[m^2s^{-2}/hz]}$', size='large')

f_tmp = np.logspace(-3, 1)
ax.plot(f_tmp, 4e-5 * f_tmp ** (-5. / 3), 'k--')

ax.set_title('Velocity Spectra')
ax.legend()
ax.axvspan(1, 16, 0, .2, facecolor='0.8', zorder=-10, edgecolor='none')
ax.text(4, 4e-4, 'Doppler noise', va='bottom', ha='center',
 #bbox=dict(facecolor='w', alpha=0.9, edgecolor='none'),
 zorder=20)

ADV Motion Correction Ex.2

import dolfyn
import dolfyn.adv.api as api

import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt
import matplotlib.dates as mpldt

##
User-input data
fname = '../../dolfyn/example_data/vector_data_imu01.VEC'
accel_filter = .03 # motion correction filter [Hz]
ensemble_size = 32*300 # sampling frequency * 300 seconds

Read the data in, use the '.userdata.json' file
data_raw = dolfyn.read(fname, userdata=True)

Crop the data for the time range of interest:
t_start = dolfyn.time.date2dt64(datetime(2012, 6, 12, 12, 8, 30))
t_end = data_raw.time[-1]
data = data_raw.sel(time=slice(t_start, t_end))

##
Clean the file using the Goring, Nikora 2002 method:
bad = api.clean.GN2002(data.vel)
data['vel'] = api.clean.clean_fill(data.vel, bad, method='cubic')
To not replace data:
data.coords['mask'] = (('dir','time'), ~bad)
data.vel.values = data.vel.where(data.mask)

plotting raw vs qc'd data
ax = plt.figure(figsize=(20, 10)).add_axes([.14, .14, .8, .74])
ax.plot(data_raw.time, data_raw.velds.u, label='raw data')
ax.plot(data.time, data.velds.u, label='despiked')
ax.set_xlabel('Time')
ax.xaxis.set_major_formatter(mpldt.DateFormatter('%D %H:%M'))
ax.set_ylabel('u-dir velocity, (m/s)')
ax.set_title('Raw vs Despiked Data')
plt.legend(loc='upper right')
plt.show()

data_cleaned = data.copy(deep=True)

##
Perform motion correction
data = api.correct_motion(data, accel_filter, to_earth=False)
For reference, dolfyn defines ‘inst’ as the IMU frame of reference, not
the ADV sensor head
After motion correction, the pre- and post-correction datasets coordinates
may not align. Since here the ADV sensor head and battery body axes are
aligned, data.u is the same axis as data_cleaned.u

Plotting corrected vs uncorrect velocity in instrument coordinates
ax = plt.figure(figsize=(20, 10)).add_axes([.14, .14, .8, .74])
ax.plot(data_cleaned.time, data_cleaned.velds.u, 'g-', label='uncorrected')
ax.plot(data.time, data.velds.u, 'b-', label='motion-corrected')
ax.set_xlabel('Time')
ax.xaxis.set_major_formatter(mpldt.DateFormatter('%D %H:%M'))
ax.set_ylabel('u velocity, (m/s)')
ax.set_title('Pre- and Post- Motion Corrected Data in XYZ coordinates')
plt.legend(loc='upper right')
plt.show()

Rotate the uncorrected data into the earth frame for comparison to motion
correction:
dolfyn.rotate2(data, 'earth', inplace=True)
data_uncorrected = dolfyn.rotate2(data_cleaned, 'earth', inplace=False)

Calc principal heading (from earth coordinates) and rotate into the
principal axes
data.attrs['principal_heading'] = dolfyn.calc_principal_heading(data.vel)
data_uncorrected.attrs['principal_heading'] = dolfyn.calc_principal_heading(
 data_uncorrected.vel)
data.velds.rotate2('principal')
data_uncorrected.velds.rotate2('principal')

Plotting corrected vs uncorrected velocity in principal coordinates
ax = plt.figure(figsize=(20, 10)).add_axes([.14, .14, .8, .74])
ax.plot(data_uncorrected.time, data_uncorrected.velds.u,
 'g-', label='uncorrected')
ax.plot(data.time, data.velds.u, 'b-', label='motion-corrected')
ax.set_xlabel('Time')
ax.xaxis.set_major_formatter(mpldt.DateFormatter('%D %H:%M'))
ax.set_ylabel('streamwise velocity, (m/s)')
ax.set_title('Corrected and Uncorrected Data in Principal Coordinates')
plt.legend(loc='upper right')
plt.show()

##
Create velocity spectra
Initiate tool to bin data based on the ensemble length. If n_fft is none,
n_fft is equal to n_bin
ensemble_tool = api.ADVBinner(n_bin=9600, fs=data.fs, n_fft=4800)

motion corrected data
mc_spec = ensemble_tool.calc_psd(data.vel, freq_units='Hz')
not-motion corrected data
unm_spec = ensemble_tool.calc_psd(data_uncorrected.vel, freq_units='Hz')
Find motion spectra from IMU velocity
uh_spec = ensemble_tool.calc_psd(data['velacc'] + data['velrot'],
 freq_units='Hz')

Plot U, V, W spectra
U = ['u', 'v', 'w']
for i in range(len(U)):
 plt.figure(figsize=(15, 13))
 plt.loglog(uh_spec.freq, uh_spec[i].mean(axis=0), 'c',
 label=('motion spectra ' + str(accel_filter) + 'Hz filter'))
 plt.loglog(unm_spec.freq, unm_spec[i].mean(
 axis=0), 'r', label='uncorrected')
 plt.loglog(mc_spec.freq, mc_spec[i].mean(
 axis=0), 'b', label='motion corrected')

 # plot -5/3 slope
 f_tmp = np.logspace(-2, 1)
 plt.plot(f_tmp, 4e-5*f_tmp**(-5/3), 'k--', label='f^-5/3 slope')

 if U[i] == 'u':
 plt.title('Spectra in streamwise dir')
 elif U[i] == 'v':
 plt.title('Spectra in cross-stream dir')
 else:
 plt.title('Spectra in up dir')
 plt.xlabel('Freq [Hz]')
 plt.ylabel('$\mathrm{[m^2s^{-2}/Hz]}$', size='large')
 plt.legend()
plt.show()

DOLfYN API

This is the Doppler Oceanography Library for pYthoN (DOLfYN). It is
designed to read and work with oceanographyic velocity measurements
from Acoustic Doppler Current Profilers (ADPs/ADCPs) and Acoustic Doppler
Velocimeters (ADVs). It is a high-level object-oriented library
composed of a set of data-object classes (types) that contain data
from a particular measurement instrument, and a collection of
functions that manipulate those data objects to accomplish data
processing and data analysis tasks.

	ADCP Module
	Quick Example

	Cleaning Data
	set_range_offset()

	find_surface()

	find_surface_from_P()

	nan_beyond_surface()

	correlation_filter()

	medfilt_orient()

	val_exceeds_thresh()

	fillgaps_time()

	fillgaps_depth()

	ADV Module
	Quick Example

	Cleaning Data
	clean_fill()

	fill_nan_ensemble_mean()

	spike_thresh()

	range_limit()

	GN2002()

	CalcMotion
	CalcMotion.reshape()

	CalcMotion.calc_velacc()

	CalcMotion.calc_velrot()

	correct_motion()

	Reading and Loading Data
	read()

	read_example()

	save()

	load()

	save_mat()

	load_mat()

	Rotate Functions
	rotate2()

	calc_principal_heading()

	set_declination()

	set_inst2head_rotmat()

	euler2orient()

	orient2euler()

	quaternion2orient()

	calc_tilt()

	Binning Tools
	Velocity Analysis

	Turbulence Analysis
	TimeBinner
	TimeBinner.reshape()

	TimeBinner.detrend()

	TimeBinner.demean()

	TimeBinner.mean()

	TimeBinner.var()

	TimeBinner.std()

	TimeBinner.calc_psd_base()

	TimeBinner.calc_csd_base()

	TimeBinner.calc_freq()

	Velocity
	Velocity.rotate2()

	Velocity.set_declination()

	Velocity.set_inst2head_rotmat()

	Velocity.save()

	Velocity.variables

	Velocity.attrs

	Velocity.coords

	Velocity.u

	Velocity.v

	Velocity.w

	Velocity.U

	Velocity.U_mag

	Velocity.U_dir

	Velocity.E_coh

	Velocity.I_tke

	Velocity.I

	Velocity.tke

	Velocity.upvp_

	Velocity.upwp_

	Velocity.vpwp_

	Velocity.upup_

	Velocity.vpvp_

	Velocity.wpwp_

	VelBinner
	VelBinner.tke

	VelBinner.tau

	VelBinner.S

	VelBinner.C

	VelBinner.do_avg()

	VelBinner.do_var()

	VelBinner.calc_coh()

	VelBinner.calc_phase_angle()

	VelBinner.calc_acov()

	VelBinner.calc_xcov()

	VelBinner.calc_tke()

	VelBinner.calc_psd()

	ADVBinner
	ADVBinner.__call__()

	ADVBinner.calc_stress()

	ADVBinner.calc_csd()

	ADVBinner.calc_doppler_noise()

	ADVBinner.check_turbulence_cascade_slope()

	ADVBinner.calc_epsilon_LT83()

	ADVBinner.calc_epsilon_SF()

	ADVBinner.calc_epsilon_TE01()

	ADVBinner.calc_L_int()

	calc_turbulence()

	ADPBinner
	ADPBinner.calc_dudz()

	ADPBinner.calc_dvdz()

	ADPBinner.calc_dwdz()

	ADPBinner.calc_shear2()

	ADPBinner.calc_doppler_noise()

	ADPBinner.calc_stress_4beam()

	ADPBinner.calc_stress_5beam()

	ADPBinner.calc_total_tke()

	ADPBinner.check_turbulence_cascade_slope()

	ADPBinner.calc_dissipation_LT83()

	ADPBinner.calc_dissipation_SF()

	ADPBinner.calc_ustar_fit()

	Data Shortcuts (Properties)

	Time Conversion
	epoch2dt64()

	dt642epoch()

	date2dt64()

	dt642date()

	epoch2date()

	date2str()

	date2epoch()

	date2matlab()

	matlab2date()

	Tools
	psd_freq()

	stepsize()

	coherence()

	cpsd_quasisync()

	cpsd()

	psd()

	phase_angle()

	detrend()

	group()

	slice1d_along_axis()

	fillgaps()

	interpgaps()

	medfiltnan()

	convert_degrees()

ADCP Module

This module contains routines for reading and working with ADP/ADCP data. It contains:

	read

	Read a binary Nortek (e.g., .VEC, .wpr, .ad2cp, etc.) or RDI (.000, .PD0, .ENX, etc.) data file.

	load

	Load xarray dataset from netCDF (.nc)

	rotate2

	Rotate a dataset to a new coordinate system.

	calc_principal_heading

	Compute the principal angle of the horizontal velocity.

	clean

	Module containing functions to clean data

	VelBinner

	This is the base binning (averaging) tool.

	ADPBinner

	A class for calculating turbulence statistics from ADCP data

Quick Example

Start by importing DOLfYN:
import dolfyn
import dolfyn.adp.api as api

Then read a file containing adv data:
ds = dolfyn.read_example('BenchFile01.ad2cp')

This ADCP was sitting 0.5 m up from the seabed
in a tripod
api.clean.set_range_offset(ds, h_deploy=0.5)

Filter the data by low correlation values (< 50% here)
ds = api.clean.correlation_filter(ds, thresh=50)

Rotate data from the instrument to true ENU (vs magnetic) frame:
First set the magnetic declination
dolfyn.set_declination(ds, 10) # 10 degrees East
dolfyn.rotate2(ds, 'earth')

At any point you can save the data:
#dolfyn.save(dat_cln, 'adcp_data.nc')

And reload the data:
#dat_copy = dolfyn.load('adcp_data.nc')

Cleaning Data

	set_range_offset

	Adds an instrument's height above seafloor (for an up-facing instrument) or depth below water surface (for a down-facing instrument) to the range coordinate.

	find_surface

	Find the surface (water level or seafloor) from amplitude data and adds the variable "depth" to the input Dataset.

	find_surface_from_P

	Calculates the distance to the water surface.

	nan_beyond_surface

	Mask the values of 3D data (vel, amp, corr, echo) that are beyond the surface.

	correlation_filter

	Filters out data where correlation is below a threshold in the along-beam correlation data.

	medfilt_orient

	Median filters the orientation data (heading-pitch-roll or quaternions)

	val_exceeds_thresh

	Find values of a variable that exceed a threshold value, and assign "val" to the velocity data where the threshold is exceeded.

	fillgaps_time

	Fill gaps (nan values) in var across time using the specified method

	fillgaps_depth

	Fill gaps (nan values) in var along the depth profile using the specified method

Module containing functions to clean data

	
dolfyn.adp.clean.set_range_offset(ds, h_deploy)

	Adds an instrument’s height above seafloor (for an up-facing instrument)
or depth below water surface (for a down-facing instrument) to the range
coordinate. Also adds an attribute to the Dataset with the current
“h_deploy” distance.

	Parameters:

	
	ds (xarray.Dataset) – The adcp dataset to ajust ‘range’ on

	h_deploy (numeric) – Deployment location in the water column, in [m]

	Returns:

	None, operates “in place”

Notes

Center of bin 1 = h_deploy + blank_dist + cell_size

Nortek doesn’t take h_deploy into account, so the range that DOLfYN
calculates distance is from the ADCP transducers. TRDI asks for h_deploy
input in their deployment software and is thereby known by DOLfYN.

If the ADCP is mounted on a tripod on the seafloor, h_deploy will be
the height of the tripod +/- any extra distance to the transducer faces.
If the instrument is vessel-mounted, h_deploy is the distance between
the surface and downward-facing ADCP’s transducers.

	
dolfyn.adp.clean.find_surface(ds, thresh=10, nfilt=None)

	Find the surface (water level or seafloor) from amplitude data and
adds the variable “depth” to the input Dataset.

	Parameters:

	
	ds (xarray.Dataset) – The full adcp dataset

	thresh (int (default: 10)) – Specifies the threshold used in detecting the surface.
(The amount that amplitude must increase by near the surface for it to
be considered a surface hit)

	nfilt (int (default: None)) – Specifies the width of the median filter applied, must be odd

	Returns:

	None, operates “in place”

	
dolfyn.adp.clean.find_surface_from_P(ds, salinity=35)

	Calculates the distance to the water surface. Temperature, salinity,
and pressure are used to calculate seawater density, which is in turn
used to calculate depth.

	Parameters:

	
	ds (xarray.Dataset) – The full adcp dataset

	salinity (numeric (default: 35)) – Water salinity in parts per thousand (ppt) or practical salinity
units (psu)

	Returns:

	
	None, operates “in place” and adds the variables “water_density” and

	”depth” to the input dataset.

Notes

Requires that the instrument’s pressure sensor was calibrated/zeroed
before deployment to remove atmospheric pressure.

Calculates seawater density using a linear approximation of the sea
water equation of state:

\[\rho - \rho_0 = -\alpha (T-T_0) + \beta (S-S_0) + \kappa P\]

Where \(\rho\) is water density, \(T\) is water temperature,
\(P\) is water pressure, \(S\) is practical salinity,
\(\alpha\) is the thermal expansion coefficient, \(\beta\) is
the haline contraction coefficient, and \(\kappa\) is adiabatic
compressibility.

	
dolfyn.adp.clean.nan_beyond_surface(ds, val=nan, beam_angle=None, inplace=False)

	Mask the values of 3D data (vel, amp, corr, echo) that are beyond the surface.

	Parameters:

	
	ds (xarray.Dataset) – The adcp dataset to clean

	val (nan or numeric (default: np.nan)) – Specifies the value to set the bad values to

	beam_angle (int (default: dataset.attrs['beam_angle'])) – ADCP beam inclination angle

	inplace (bool (default: False)) – When True the existing data object is modified. When False
a copy is returned.

	Returns:

	ds (xarray.Dataset) – Sets the adcp dataset where relevant arrays with values greater than depth
set to NaN

Notes

Surface interference expected to happen at
distance > range * cos(beam angle) - cell size

	
dolfyn.adp.clean.correlation_filter(ds, thresh=50, inplace=False)

	Filters out data where correlation is below a threshold in the
along-beam correlation data.

	Parameters:

	
	ds (xarray.Dataset) – The adcp dataset to clean.

	thresh (numeric (default: 50)) – The maximum value of correlation to screen, in counts or %

	inplace (bool (default: False)) – When True the existing data object is modified. When False
a copy is returned.

	Returns:

	ds (xarray.Dataset) – Elements in velocity, correlation, and amplitude are removed if below the
correlation threshold

Notes

Does not edit correlation or amplitude data.

	
dolfyn.adp.clean.medfilt_orient(ds, nfilt=7)

	Median filters the orientation data (heading-pitch-roll or quaternions)

	Parameters:

	
	ds (xarray.Dataset) – The adcp dataset to clean

	nfilt (numeric (default: 7)) – The length of the median-filtering kernel
nfilt must be odd.

	Returns:

	ds (xarray.Dataset) – The adcp dataset with the filtered orientation data

See also

scipy.signal.medfilt

	
dolfyn.adp.clean.val_exceeds_thresh(var, thresh=5, val=nan)

	Find values of a variable that exceed a threshold value,
and assign “val” to the velocity data where the threshold is
exceeded.

	Parameters:

	
	var (xarray.DataArray) – Variable to clean

	thresh (numeric (default: 5)) – The maximum value of velocity to screen

	val (nan or numeric (default: np.nan)) – Specifies the value to set the bad values to

	Returns:

	ds (xarray.Dataset) – The adcp dataset with datapoints beyond thresh are set to val

	
dolfyn.adp.clean.fillgaps_time(var, method='cubic', maxgap=None)

	Fill gaps (nan values) in var across time using the specified method

	Parameters:

	
	var (xarray.DataArray) – The variable to clean

	method (string (default: 'cubic')) – Interpolation method to use

	maxgap (numeric (default: None)) – Maximum gap of missing data to interpolate across

	Returns:

	out (xarray.DataArray) – The input DataArray ‘var’ with gaps in ‘var’ interpolated across time

See also

xarray.DataArray.interpolate_na

	
dolfyn.adp.clean.fillgaps_depth(var, method='cubic', maxgap=None)

	Fill gaps (nan values) in var along the depth profile using the specified method

	Parameters:

	
	var (xarray.DataArray) – The variable to clean

	method (string (default: 'cubic')) – Interpolation method to use

	maxgap (numeric (default: None)) – Maximum gap of missing data to interpolate across

	Returns:

	out (xarray.DataArray) – The input DataArray ‘var’ with gaps in ‘var’ interpolated across depth

See also

xarray.DataArray.interpolate_na

ADV Module

This module contains routines for reading and working with ADV data. It contains:

	read

	Read a binary Nortek (e.g., .VEC, .wpr, .ad2cp, etc.) or RDI (.000, .PD0, .ENX, etc.) data file.

	load

	Load xarray dataset from netCDF (.nc)

	rotate2

	Rotate a dataset to a new coordinate system.

	set_inst2head_rotmat

	Set the instrument to head rotation matrix for the Nortek ADV if it hasn't already been set through a '.userdata.json' file.

	calc_principal_heading

	Compute the principal angle of the horizontal velocity.

	clean

	Module containing functions to clean data

	correct_motion

	This function performs motion correction on an IMU-ADV data object.

	VelBinner

	This is the base binning (averaging) tool.

	ADVBinner

	A class that builds upon VelBinner for calculating turbulence statistics and velocity spectra from ADV data

	calc_turbulence

	Functional version of ADVBinner that computes a suite of turbulence statistics for the input dataset, and returns a binned data object.

Quick Example

Start by importing DOLfYN:
import dolfyn
import dolfyn.adv.api as api

Then read a file containing adv data:
dat = dolfyn.read_example('vector_data01.VEC')

Clean the file using the Goring+Nikora method:
mask = api.clean.GN2002(dat.vel)
dat['vel'] = api.clean.clean_fill(dat.vel, mask, npt=12, method='cubic')

Rotate that data from the instrument to earth frame:
First set the magnetic declination
dolfyn.set_declination(dat, 10) # 10 degrees East
dolfyn.rotate2(dat, 'earth')

Rotate it into a 'principal axes frame':
First calculate the principal heading
dat.attrs['principal_heading'] = dolfyn.calc_principal_heading(dat.vel)
dolfyn.rotate2(dat, 'principal')

Define an averaging object, and create an 'ensembled' data set:
binner = api.ADVBinner(n_bin=9600, fs=dat.fs, n_fft=4096)
dat_binned = binner(dat)

At any point you can save the data:
#dolfyn.save(dat_binned, 'adv_data.nc')

And reload the data:
#dat_bin_copy = dolfyn.load('adv_data.nc')

Cleaning Data

	clean_fill

	Interpolate over mask values in timeseries data using the specified method

	fill_nan_ensemble_mean

	Fill missing values with the ensemble mean.

	spike_thresh

	Returns a logical vector where a spike in u of magnitude greater than thresh occurs.

	range_limit

	Returns a logical vector that is True where the values of u are outside of range.

	GN2002

	The Goring & Nikora 2002 'despiking' method, with Wahl2003 correction.

Module containing functions to clean data

	
dolfyn.adv.clean.clean_fill(u, mask, npt=12, method='cubic', maxgap=6)

	Interpolate over mask values in timeseries data using the
specified method

	Parameters:

	
	u (xarray.DataArray) – The dataArray to clean.

	mask (bool) – Logical tensor of elements to “nan” out (from spikeThresh,
rangeLimit, or GN2002) and replace

	npt (int) – The number of points on either side of the bad values that
interpolation occurs over

	method (string (default: 'cubic')) – Interpolation scheme to use (linear, cubic, pchip, etc)

	maxgap (int (default: 6)) – Max number of consective nan’s to interpolate across

	Returns:

	da (xarray.DataArray) – The dataArray with nan’s filled in

See also

xarray.DataArray.interpolate_na

	
dolfyn.adv.clean.fill_nan_ensemble_mean(u, mask, fs, window)

	Fill missing values with the ensemble mean.

	Parameters:

	
	u (xarray.DataArray (..., time)) – The dataArray to clean. Can be 1D or 2D.

	mask (bool) – Logical tensor of elements to “nan” out (from spikeThresh, rangeLimit,
or GN2002) and replace

	fs (int) – Instrument sampling frequency

	window (int) – Size of window in seconds used to calculate ensemble means

	Returns:

	da (xarray.DataArray) – The dataArray with nan’s filled in

Notes

Gaps larger than the ensemble size will not get filled in.

	
dolfyn.adv.clean.spike_thresh(u, thresh=10)

	Returns a logical vector where a spike in u of magnitude greater
than thresh occurs. Both ‘Negative’ and ‘positive’ spikes are found.

	Parameters:

	
	u (xarray.DataArray) – The timeseries data to clean.

	thresh (int (default: 10)) – Magnitude of velocity spike, must be positive.

	Returns:

	mask (|np.ndarray|) – Logical vector with spikes labeled as ‘True’

	
dolfyn.adv.clean.range_limit(u, range=[-5, 5])

	Returns a logical vector that is True where the values of u
are outside of range.

	Parameters:

	
	u (xarray.DataArray) – The timeseries data to clean.

	range (list (default: [-5, 5])) – Min and max magnitudes beyond which are masked

	Returns:

	mask (|np.ndarray|) – Logical vector with spikes labeled as ‘True’

	
dolfyn.adv.clean.GN2002(u, npt=5000)

	The Goring & Nikora 2002 ‘despiking’ method, with Wahl2003
correction.
Returns a logical vector that is true where spikes are identified.

	Parameters:

	
	u (xarray.DataArray) – The velocity array (1D or 3D) to clean.

	npt (int (default: 5000)) – The number of points over which to perform the method.

	Returns:

	mask (|np.ndarray|) – Logical vector with spikes labeled as ‘True’

	
class dolfyn.adv.motion.CalcMotion(ds, accel_filtfreq=None, vel_filtfreq=None, to_earth=True)

	Bases: object

A ‘calculator’ for computing the velocity of points that are
rigidly connected to an ADV-body with an IMU.

	Parameters:

	
	ds (xarray.Dataset) – The IMU-adv data that will be used to compute motion.

	accel_filtfreq (float) – the frequency at which to high-pass filter the acceleration
sigal to remove low-frequency drift. (default: 0.03 Hz)

	vel_filtfreq (float (optional)) – a second frequency to high-pass filter the integrated
acceleration. (default: 1/3 of accel_filtfreq)

	
reshape(dat, n_bin)

	

	
calc_velacc()

	Calculates the translational velocity from the high-pass
filtered acceleration signal.

	Returns:

	velacc (numpy.ndarray (3 x n_time)) – The acceleration-induced velocity array (3, n_time).

	
calc_velrot(vec, to_earth=None)

	Calculate the induced velocity due to rotations of the
instrument about the IMU center.

	Parameters:

	vec (numpy.ndarray (len(3) or 3 x M)) – The vector in meters (or vectors) from the body-origin
(center of head end-cap) to the point of interest (in the
body coord-sys).

	Returns:

	velrot (numpy.ndarray (3 x M x N_time)) – The rotation-induced velocity array (3, n_time).

	
dolfyn.adv.motion.correct_motion(ds, accel_filtfreq=None, vel_filtfreq=None, to_earth=True, separate_probes=False)

	This function performs motion correction on an IMU-ADV data
object. The IMU and ADV data should be tightly synchronized and
contained in a single data object.

	Parameters:

	
	ds (xarray.Dataset) – Cleaned ADV dataset in “inst” coordinates

	accel_filtfreq (float) – the frequency at which to high-pass filter the acceleration
sigal to remove low-frequency drift.

	vel_filtfreq (float (optional)) – a second frequency to high-pass filter the integrated
acceleration. (default: 1/3 of accel_filtfreq)

	to_earth (bool (optional, default: True)) – All variables in the ds.props[‘rotate_vars’] list will be
rotated into either the earth frame (to_earth=True) or the
instrument frame (to_earth=False).

	separate_probes (bool (optional, default: False)) – a flag to perform motion-correction at the probe tips, and
perform motion correction in beam-coordinates, then transform
back into XYZ/earth coordinates. This correction seems to be
lower than the noise levels of the ADV, so the default is to not
use it (False).

	Returns:

	
	This function returns None, it operates on the input data object,

	ds. The following attributes are added to ds – velraw is the uncorrected velocity

	velrot is the rotational component of the head motion (from
	angrt)

	velacc is the translational component of the head motion (from
	accel, the high-pass filtered accel sigal)

acclow is the low-pass filtered accel sigal (i.e.,

	The primary velocity vector attribute, vel, is motion corrected

	such that – vel = velraw + velrot + velacc

	The sigs are correct in this equation. The measured velocity

	induced by head-motion is *in the opposite direction of the head*

	motion. i.e. when the head moves one way in stationary flow, it

	measures a velocity in the opposite direction. Therefore, to

	remove the motion from the raw sigal we *add the head motion.*

Notes

Acceleration signals from inertial sensors are notorious for
having a small bias that can drift slowly in time. When
integrating these sigals to estimate velocity the bias is
amplified and leads to large errors in the estimated
velocity. There are two methods for removing these errors,

	high-pass filter the acceleration sigal prior and/or after
integrating. This implicitly assumes that the low-frequency
translational velocity is zero.

	provide a slowly-varying reference position (often from a GPS)
to an IMU that can use the sigal (usually using Kalman
filters) to debias the acceleration sigal.

Because method (1) removes real low-frequency acceleration,
method (2) is more accurate. However, providing reference position
estimates to undersea instruments is practically challenging and
expensive. Therefore, lacking the ability to use method (2), this
function utilizes method (1).

For deployments in which the ADV is mounted on a mooring, or other
semi-fixed structure, the assumption of zero low-frequency
translational velocity is a reasonable one. However, for
deployments on ships, gliders, or other moving objects it is
not. The measured velocity, after motion-correction, will still
hold some of this contamination and will be a sum of the ADV
motion and the measured velocity on long time scales. If
low-frequency motion is known separate from the ADV (e.g. from a
bottom-tracking ADP, or from a ship’s GPS), it may be possible to
remove that sigal from the ADV sigal in post-processing.

Reading and Loading Data

Contains high level routines for reading in instrument binary data, and saving and loading xarray datasets. DOLfYN will automatically search through and select a binary reader based on the input data’s file extension.

	read

	Read a binary Nortek (e.g., .VEC, .wpr, .ad2cp, etc.) or RDI (.000, .PD0, .ENX, etc.) data file.

	read_example

	Read an ADCP or ADV datafile from the examples directory.

	save

	Save xarray dataset as netCDF (.nc).

	load

	Load xarray dataset from netCDF (.nc)

	save_mat

	Save xarray dataset as a MATLAB (.mat) file

	load_mat

	Load xarray dataset from MATLAB (.mat) file, complimentary to save_mat()

I/O functions can be accessed directly from DOLfYN’s main import:

>> import dolfyn
>> dat = dolfyn.read(<path/to/my_data_file>)
>> dolfyn.save(dat, <path/to/save_file.nc>)

	
dolfyn.io.api.read(fname, userdata=True, nens=None, **kwargs)

	Read a binary Nortek (e.g., .VEC, .wpr, .ad2cp, etc.) or RDI
(.000, .PD0, .ENX, etc.) data file.

	Parameters:

	
	filename (string) – Filename of instrument file to read.

	userdata (bool, or string of userdata.json filename (default True)) – Whether to read the ‘<base-filename>.userdata.json’ file.

	nens (None, int or 2-element tuple (start, stop)) – Number of pings or ensembles to read from the file.
Default is None, read entire file

	**kwargs (dict) – Passed to instrument-specific parser.

	Returns:

	ds (xarray.Dataset) – An xarray dataset from instrument datafile.

	
dolfyn.io.api.read_example(name, **kwargs)

	Read an ADCP or ADV datafile from the examples directory.

	Parameters:

	name (str) – A few available files:

AWAC_test01.wpr
BenchFile01.ad2cp
RDI_test01.000
vector_burst_mode01.VEC
vector_data01.VEC
vector_data_imu01.VEC
winriver01.PD0
winriver02.PD0

	Returns:

	ds (xarray.Dataset) – An xarray dataset from the binary instrument data.

	
dolfyn.io.api.save(ds, filename, format='NETCDF4', engine='netcdf4', compression=False, **kwargs)

	Save xarray dataset as netCDF (.nc).

	Parameters:

	
	ds (xarray.Dataset) – Dataset to save

	filename (str) – Filename and/or path with the ‘.nc’ extension

	compression (bool (default: False)) – When true, compress all variables with zlib complevel=1.

	**kwargs (dict) – These are passed directly to xarray.Dataset.to_netcdf()

Notes

Drops ‘config’ lines.

Rewrites variable encoding dict

More detailed compression options can be specified by specifying
‘encoding’ in kwargs. The values in encoding will take precedence
over whatever is set according to the compression option above.
See the xarray.to_netcdf documentation for more details.

	
dolfyn.io.api.load(filename)

	Load xarray dataset from netCDF (.nc)

	Parameters:

	filename (str) – Filename and/or path with the ‘.nc’ extension

	Returns:

	ds (xarray.Dataset) – An xarray dataset from the binary instrument data.

	
dolfyn.io.api.save_mat(ds, filename, datenum=True)

	Save xarray dataset as a MATLAB (.mat) file

	Parameters:

	
	ds (xarray.Dataset) – Dataset to save

	filename (str) – Filename and/or path with the ‘.mat’ extension

	datenum (bool) – If true, converts time to datenum. If false, time will be saved
in “epoch time”.

Notes

The xarray data format is saved as a MATLAB structure with the fields
‘vars, coords, config, units’. Converts time to datenum

See also

scipy.io.savemat

	
dolfyn.io.api.load_mat(filename, datenum=True)

	Load xarray dataset from MATLAB (.mat) file, complimentary to save_mat()

A .mat file must contain the fields: {vars, coords, config, units},
where ‘coords’ contain the dimensions of all variables in ‘vars’.

	Parameters:

	
	filename (str) – Filename and/or path with the ‘.mat’ extension

	datenum (bool) – If true, converts time from datenum. If false, converts time from
“epoch time”.

	Returns:

	ds (xarray.Dataset) – An xarray dataset from the binary instrument data.

See also

scipy.io.loadmat

Rotate Functions

Contains functions for rotating data through frames of reference (FoR):

	‘beam’: Follows the acoustic beam FoR, where velocity data is organized by beam number 1-3 or 1-4.

	‘inst’: The instrument’s XYZ Cartesian directions. For ADVs, this orientation is from the mark on the ADV body/battery canister, not the sensor head. For TRDI 4-beam instruments, the fourth velocity term is the error velocity (aka XYZE). For Nortek 4-beam instruments, this is XYZ1 Z2, where E=Z2-Z1.

	‘earth’: East North UP (ENU) FoR. Based on either magnetic or true North, depending on whether or not DOLfYN has a magnetic declination associated with the dataset. Instruments do not internally record magnetic declination, unless it has been supplied via external software like TRDI’s VMDAS.

	‘principal’: Rotates velocity data into a streamwise, cross-stream, and vertical FoR based on the principal flow direction. One must calculate principal heading first.

	rotate2

	Rotate a dataset to a new coordinate system.

	set_declination

	Set the magnetic declination

	calc_principal_heading

	Compute the principal angle of the horizontal velocity.

	set_inst2head_rotmat

	Set the instrument to head rotation matrix for the Nortek ADV if it hasn't already been set through a '.userdata.json' file.

	euler2orient

	Calculate the orientation matrix from DOLfYN-defined euler angles.

	orient2euler

	Calculate DOLfYN-defined euler angles from the orientation matrix.

	quaternion2orient

	Calculate orientation from Nortek AHRS quaternions, where q = [W, X, Y, Z] instead of the standard q = [X, Y, Z, W] = [q1, q2, q3, q4]

These functions pertain to both ADCPs and ADVs:

>> import dolfyn
>> dat = dolfyn.read_example('burst_mode01.VEC')

>> dolfyn.set_declination(dat, 12)
>> dolfyn.rotate2(dat, 'earth')

>> dat.attrs['principal_heading'] = dolfyn.calc_principal_heading(dat['vel'])
>> dolfyn.rotate2(dat, 'principal')

	
dolfyn.rotate.api.rotate2(ds, out_frame='earth', inplace=True)

	Rotate a dataset to a new coordinate system.

	Parameters:

	
	ds (xr.Dataset) – The dolfyn dataset (ADV or ADCP) to rotate.

	out_frame (string {'beam', 'inst', 'earth', 'principal'}) – The coordinate system to rotate the data into.

	inplace (bool (default: True)) – When True ds is modified. When False a copy is returned.

	Returns:

	ds (xarray.Dataset or None) – Returns a new rotated dataset when ``inplace=False``, otherwise
returns None.

Notes

	This function rotates all variables in ds.attrs['rotate_vars'].

	In order to rotate to the ‘principal’ frame, a value should exist for
ds.attrs['principal_heading']. The function
calc_principal_heading
is recommended for this purpose, e.g.:

ds.attrs[‘principal_heading’] = dolfyn.calc_principal_heading(ds[‘vel’].mean(range))

where here we are using the depth-averaged velocity to calculate
the principal direction.

	
dolfyn.rotate.api.calc_principal_heading(vel, tidal_mode=True)

	Compute the principal angle of the horizontal velocity.

	Parameters:

	
	vel (np.ndarray (2,...,Nt), or (3,...,Nt)) – The 2D or 3D velocity array (3rd-dim is ignored in this calculation)

	tidal_mode (bool (default: True)) – If true, range is set from 0 to +/-180 degrees. If false, range is 0 to
360 degrees

	Returns:

	p_heading (float or ndarray) – The principal heading in degrees clockwise from North.

Notes

When tidal_mode=True, this tool calculates the heading that is
aligned with the bidirectional flow. It does so following these
steps:

	rotates vectors with negative velocity by 180 degrees

	then doubles those angles to make a complete circle again

	computes a mean direction from this, and halves that angle
(to undo the doubled-angles in step 2)

	The returned angle is forced to be between 0 and 180. So, you
may need to add 180 to this if you want your positive
direction to be in the western-half of the plane.

Otherwise, this function simply computes the average direction
using a vector method.

	
dolfyn.rotate.api.set_declination(ds, declin, inplace=True)

	Set the magnetic declination

	Parameters:

	
	ds (xarray.Dataset or dolfyn.velocity.Velocity) – The input dataset or velocity class

	declination (float) – The value of the magnetic declination in degrees (positive
values specify that Magnetic North is clockwise from True North)

	inplace (bool (default: True)) – When True ds is modified. When False a copy is returned.

	Returns:

	ds (xarray.Dataset or None) – Returns a new dataset with declination set when
``inplace=False``, otherwise returns None.

Notes

This function modifies the data object in the following ways:

	If the dataset is in the earth reference frame at the time of
setting declination, it will be rotated into the “True-East,
True-North, Up” (hereafter, ETU) coordinate system

	dat['orientmat'] is modified to be an ETU to
instrument (XYZ) rotation matrix (rather than the magnetic-ENU to
XYZ rotation matrix). Therefore, all rotations to/from the ‘earth’
frame will now be to/from this ETU coordinate system.

	The value of the specified declination will be stored in
dat.attrs['declination']

	dat['heading'] is adjusted for declination
(i.e., it is relative to True North).

	If dat.attrs['principal_heading'] is set, it is
adjusted to account for the orientation of the new ‘True’
earth coordinate system (i.e., calling set_declination on a
data object in the principal coordinate system, then calling
dat.rotate2(‘earth’) will yield a data object in the new
‘True’ earth coordinate system)

	
dolfyn.rotate.api.set_inst2head_rotmat(ds, rotmat, inplace=True)

	Set the instrument to head rotation matrix for the Nortek ADV
if it hasn’t already been set through a ‘.userdata.json’ file.

	Parameters:

	
	ds (xarray.Dataset) – The data set to assign inst2head_rotmat

	rotmat (float) – 3x3 rotation matrix

	inplace (bool (default: True)) – When True ds is modified. When False a copy is returned.

	Returns:

	ds (xarray.Dataset or None) – Returns a new dataset with inst2head_rotmat set when
``inplace=False``, otherwise returns None.

Notes

If the data object is in earth or principal coords, it is first
rotated to ‘inst’ before assigning inst2head_rotmat, it is then
rotated back to the coordinate system in which it was input. This
way the inst2head_rotmat gets applied correctly (in inst
coordinate system).

	
dolfyn.rotate.base.euler2orient(heading, pitch, roll, units='degrees')

	Calculate the orientation matrix from DOLfYN-defined euler angles.

This function is not likely to be called during data processing since it requires
DOLfYN-defined euler angles. It is intended for testing DOLfYN.

The matrices H, P, R are the transpose of the matrices for rotation about z, y, x
as shown here https://en.wikipedia.org/wiki/Rotation_matrix. The transpose is used
because in DOLfYN the orientation matrix is organized for
rotation from EARTH –> INST, while the wiki’s matrices are organized for
rotation from INST –> EARTH.

	Parameters:

	
	heading (numpy.ndarray (Nt)) – The heading angle.

	pitch (numpy.ndarray (Nt)) – The pitch angle.

	roll (numpy.ndarray (Nt)) – The roll angle.

	units (str {'degrees' (default), 'radians'}) –

	Returns:

	omat (|np.ndarray| (3x3xNt)) – The orientation matrix of the data. The returned orientation
matrix obeys the following conventions:

	a “ZYX” rotation order. That is, these variables are computed
assuming that rotation from the earth -> instrument frame happens
by rotating around the z-axis first (heading), then rotating
around the y-axis (pitch), then rotating around the x-axis (roll).
Note this requires matrix multiplication in the reverse order.

	heading is defined as the direction the x-axis points, positive
clockwise from North (this is opposite the right-hand-rule
around the Z-axis), range 0-360 degrees.

	pitch is positive when the x-axis pitches up (this is opposite the
right-hand-rule around the Y-axis)

	roll is positive according to the right-hand-rule around the
instrument’s x-axis

	
dolfyn.rotate.base.orient2euler(omat)

	Calculate DOLfYN-defined euler angles from the orientation matrix.

	Parameters:

	omat (numpy.ndarray) – The orientation matrix

	Returns:

	
	heading (|np.ndarray|) – The heading angle. Heading is defined as the direction the x-axis points,
positive clockwise from North (this is opposite the right-hand-rule
around the Z-axis), range 0-360 degrees.

	pitch (np.ndarray) – The pitch angle (degrees). Pitch is positive when the x-axis
pitches up (this is opposite the right-hand-rule around the Y-axis).

	roll (np.ndarray) – The roll angle (degrees). Roll is positive according to the
right-hand-rule around the instrument’s x-axis.

	
dolfyn.rotate.base.quaternion2orient(quaternions)

	Calculate orientation from Nortek AHRS quaternions, where q = [W, X, Y, Z]
instead of the standard q = [X, Y, Z, W] = [q1, q2, q3, q4]

	Parameters:

	quaternions (xarray.DataArray) – Quaternion dataArray from the raw dataset

	Returns:

	orientmat (|np.ndarray|) – The earth2inst rotation maxtrix as calculated from the quaternions

See also

scipy.spatial.transform.Rotation

	
dolfyn.rotate.base.calc_tilt(pitch, roll)

	Calculate “tilt”, the vertical inclination, from pitch and roll.

	Parameters:

	
	roll (numpy.ndarray or xarray.DataArray) – Instrument roll

	pitch (numpy.ndarray or xarray.DataArray) – Instrument pitch

	Returns:

	tilt (numpy.ndarray) – Vertical inclination of the instrument

Binning Tools

Velocity Analysis

Analysis in DOLfYN is primarily handled through the VelBinner class.
Below is a list of functions that can be called from VelBinner.

	VelBinner

	This is the base binning (averaging) tool.

	reshape

	Reshape the array arr to shape (...,n,n_bin+n_pad).

	detrend

	Reshape the array arr to shape (...,n,n_bin+n_pad) and remove the best-fit trend line from each bin.

	demean

	Reshape the array arr to shape (...,n,n_bin+n_pad) and remove the mean from each bin.

	mean

	Reshape the array arr to shape (...,n,n_bin+n_pad) and take the mean of each bin along the specified axis.

	var

	Reshape the array arr to shape (...,n,n_bin+n_pad) and take the variance of each bin along the specified axis.

	std

	Reshape the array arr to shape (...,n,n_bin+n_pad) and take the standard deviation of each bin along the specified axis.

	calc_tke

	Calculate the turbulent kinetic energy (TKE) (variances of u,v,w).

	calc_psd

	Calculate the power spectral density of velocity.

	calc_freq

	Calculate the ordinary or radial frequency vector for the PSDs

	calc_psd_base

	Calculate power spectral density of dat

	calc_csd_base

	Calculate the cross power spectral density of dat.

Turbulence Analysis

Functions for analyzing ADV data via the ADVBinner class, beyond those described in VelBinner.

	ADVBinner

	A class that builds upon VelBinner for calculating turbulence statistics and velocity spectra from ADV data

	calc_turbulence

	Functional version of ADVBinner that computes a suite of turbulence statistics for the input dataset, and returns a binned data object.

	calc_csd

	Calculate the cross-spectral density of velocity components.

	calc_stress

	Calculate the stresses (covariances of u,v,w)

	calc_doppler_noise

	Calculate bias due to Doppler noise using the noise floor of the velocity spectra.

	calc_epsilon_LT83

	Calculate the dissipation rate from the PSD

	calc_epsilon_SF

	Calculate dissipation rate using the "structure function" (SF) method

	calc_epsilon_TE01

	Calculate the dissipation rate according to TE01.

	calc_L_int

	Calculate integral length scales.

Functions for analyzing ADCP data via the ADPBinner class, beyond those described in VelBinner.

	ADPBinner

	A class for calculating turbulence statistics from ADCP data

	calc_dudz

	The shear in the first velocity component.

	calc_dvdz

	The shear in the second velocity component.

	calc_dwdz

	The shear in the third velocity component.

	calc_shear2

	The horizontal shear squared.

	calc_doppler_noise

	Calculate bias due to Doppler noise using the noise floor of the velocity spectra.

	calc_stress_4beam

	Calculate the stresses from the covariance of along-beam velocity measurements

	calc_stress_5beam

	Calculate the stresses from the covariance of along-beam velocity measurements

	calc_total_tke

	Calculate magnitude of turbulent kinetic energy from 5-beam ADCP.

	calc_dissipation_LT83

	Calculate the TKE dissipation rate from the velocity spectra.

	calc_dissipation_SF

	Calculate TKE dissipation rate from ADCP along-beam velocity using the "structure function" (SF) method.

	calc_ustar_fit

	Approximate friction velocity from shear stress using a logarithmic profile.

	
class dolfyn.binned.TimeBinner(n_bin, fs, n_fft=None, n_fft_coh=None, noise=[0, 0, 0])

	Bases: object

Initialize an averaging object

	Parameters:

	
	n_bin (int) – Number of data points to include in a ‘bin’ (ensemble), not the
number of bins

	fs (int) – Instrument sampling frequency in Hz

	n_fft (int) – Number of data points to use for fft (n_fft`<=`n_bin).
Default: n_fft`=`n_bin

	n_fft_coh (int) – Number of data points to use for coherence and cross-spectra ffts
Default: n_fft_coh`=`n_fft

	noise (float, list or numpy.ndarray) – Instrument’s doppler noise in same units as velocity

	
reshape(arr, n_pad=0, n_bin=None)

	Reshape the array arr to shape (…,n,n_bin+n_pad).

	Parameters:

	
	arr (numpy.ndarray) – Input data

	n_pad (int) – Is used to add n_pad/2 points from the end of the previous
ensemble to the top of the current, and n_pad/2 points
from the top of the next ensemble to the bottom of the
current. Zeros are padded in the upper-left and lower-right
corners of the matrix (beginning/end of timeseries). In
this case, the array shape will be (…,`n`,`n_pad`+`n_bin`)

	n_bin (int (default: self.n_bin)) – Override this binner’s n_bin.

	Returns:

	out (numpy.ndarray) – Data in reshaped format, where the last axis is of length
int(n_bin).

Notes

n_bin can be non-integer, in which case the output array
size will be n_pad`+`n_bin, and the decimal will
cause skipping of some data points in arr. In particular,
every mod(n_bin,1) bins will have a skipped point. For
example:
- for n_bin=2048.2 every 1/5 bins will have a skipped point.
- for n_bin=4096.9 every 9/10 bins will have a skipped point.

	
detrend(arr, axis=-1, n_pad=0, n_bin=None)

	Reshape the array arr to shape (…,n,n_bin+n_pad)
and remove the best-fit trend line from each bin.

	Parameters:

	
	arr (numpy.ndarray) – Input data

	axis (int (default: -1)) – Axis along which to take mean

	n_pad (int (default: 0)) – Is used to add n_pad/2 points from the end of the previous
ensemble to the top of the current, and n_pad/2 points
from the top of the next ensemble to the bottom of the
current. Zeros are padded in the upper-left and lower-right
corners of the matrix (beginning/end of timeseries). In
this case, the array shape will be (…,`n`,`n_pad`+`n_bin`)

	n_bin (int (default: self.n_bin)) – Override this binner’s n_bin.

	Returns:

	out (numpy.ndarray) – Detrended data, where the last axis is of length int(n_bin).

	
demean(arr, axis=-1, n_pad=0, n_bin=None)

	Reshape the array arr to shape (…,n,n_bin+n_pad)
and remove the mean from each bin.

	Parameters:

	
	arr (numpy.ndarray) – Input data

	axis (int (default: -1)) – Axis along which to take mean

	n_pad (int (default: 0)) – Is used to add n_pad/2 points from the end of the previous
ensemble to the top of the current, and n_pad/2 points
from the top of the next ensemble to the bottom of the
current. Zeros are padded in the upper-left and lower-right
corners of the matrix (beginning/end of timeseries). In
this case, the array shape will be (…,`n`,`n_pad`+`n_bin`)

	n_bin (int (default: self.n_bin)) – Override this binner’s n_bin.

	Returns:

	out (numpy.ndarray) – Demeaned data, where the last axis is of length int(n_bin).

	
mean(arr, axis=-1, n_bin=None)

	Reshape the array arr to shape (…,n,n_bin+n_pad)
and take the mean of each bin along the specified axis.

	Parameters:

	
	arr (numpy.ndarray) – Input data

	axis (int (default: -1)) – Axis along which to take mean

	n_bin (int (default: self.n_bin)) – Override this binner’s n_bin.

	Returns:

	out (numpy.ndarray)

	
var(arr, axis=-1, n_bin=None)

	Reshape the array arr to shape (…,n,n_bin+n_pad)
and take the variance of each bin along the specified axis.

	Parameters:

	
	arr (numpy.ndarray) – Input data

	axis (int (default: -1)) – Axis along which to take variance

	n_bin (int (default: self.n_bin)) – Override this binner’s n_bin.

	Returns:

	out (numpy.ndarray)

	
std(arr, axis=-1, n_bin=None)

	Reshape the array arr to shape (…,n,n_bin+n_pad)
and take the standard deviation of each bin along the
specified axis.

	Parameters:

	
	arr (numpy.ndarray) – Input data

	axis (int (default: -1)) – Axis along which to take std dev

	n_bin (int (default: self.n_bin)) – Override this binner’s n_bin.

	Returns:

	out (numpy.ndarray)

	
calc_psd_base(dat, fs=None, window='hann', noise=0, n_bin=None, n_fft=None, n_pad=None, step=None)

	Calculate power spectral density of dat

	Parameters:

	
	dat (xarray.DataArray) – The raw dataArray of which to calculate the psd.

	fs (float (optional)) – The sample rate (Hz).

	window (str) – String indicating the window function to use (default: ‘hanning’).

	noise (float) – The white-noise level of the measurement (in the same units
as dat).

	n_bin (int) – n_bin of veldat2, number of elements per bin if ‘None’ is taken
from VelBinner

	n_fft (int) – n_fft of veldat2, number of elements per bin if ‘None’ is taken
from VelBinner

	n_pad (int (optional)) – The number of values to pad with zero (default: 0)

	step (int (optional)) – Controls amount of overlap in fft (default: the step size is
chosen to maximize data use, minimize nens, and have a
minimum of 50% overlap.).

	Returns:

	out (numpy.ndarray) – The power spectral density of dat

Notes

PSD’s are calculated based on sample rate units

	
calc_csd_base(dat1, dat2, fs=None, window='hann', n_fft=None, n_bin=None)

	Calculate the cross power spectral density of dat.

	Parameters:

	
	dat1 (numpy.ndarray) – The first (shorter, if applicable) raw dataArray of which to
calculate the cpsd.

	dat2 (numpy.ndarray) – The second (the shorter, if applicable) raw dataArray of which to
calculate the cpsd.

	fs (float (optional)) – The sample rate (rad/s or Hz).

	window (str) – String indicating the window function to use (default: ‘hanning’).

	n_fft (int) – n_fft of veldat2, number of elements per bin if ‘None’ is taken
from VelBinner

	n_bin (int) – n_bin of veldat2, number of elements per bin if ‘None’ is taken
from VelBinner

	Returns:

	out (numpy.ndarray) – The cross power spectral density of dat1 and dat2

Notes

PSD’s are calculated based on sample rate units

The two velocity inputs do not have to be perfectly synchronized, but
they should have the same start and end timestamps

	
calc_freq(fs=None, units='rad/s', n_fft=None, coh=False)

	Calculate the ordinary or radial frequency vector for the PSDs

	Parameters:

	
	fs (float (optional)) – The sample rate (Hz).

	units (string) – Frequency units in either Hz or rad/s (f or omega)

	coh (bool) – Calculate the frequency vector for coherence/cross-spectra
(default: False) i.e. use self.n_fft_coh instead of
self.n_fft.

	n_fft (int) – n_fft of veldat2, number of elements per bin if ‘None’ is taken
from VelBinner

	Returns:

	out (numpy.ndarray) – Spectrum frequency array in units of ‘Hz’ or ‘rad/s’

	
class dolfyn.velocity.Velocity(ds, *args, **kwargs)

	Bases: object

All ADCP and ADV xarray datasets wrap this base class.
The turbulence-related attributes defined within this class
assume that the 'tke_vec' and 'stress_vec' data entries are
included in the dataset. These are typically calculated using a
VelBinner tool, but the method for calculating these
variables can depend on the details of the measurement
(instrument, it’s configuration, orientation, etc.).

See also

VelBinner

	
rotate2(out_frame='earth', inplace=True)

	Rotate the dataset to a new coordinate system.

	Parameters:

	
	out_frame (string {'beam', 'inst', 'earth', 'principal'}) – The coordinate system to rotate the data into.

	inplace (bool (default: True)) – When True the existing data object is modified. When False
a copy is returned.

	Returns:

	ds (xarray.Dataset or None) – Returns the rotated dataset when ``inplace=False``, otherwise
returns None.

Notes

	This function rotates all variables in ds.attrs['rotate_vars'].

	To rotate to the ‘principal’ frame, a value of
ds.attrs['principal_heading'] must exist. The function
calc_principal_heading
is recommended for this purpose, e.g.:

ds.attrs['principal_heading'] = dolfyn.calc_principal_heading(ds['vel'].mean(range))

where here we are using the depth-averaged velocity to calculate
the principal direction.

	
set_declination(declin, inplace=True)

	Set the magnetic declination

	Parameters:

	
	declination (float) – The value of the magnetic declination in degrees (positive
values specify that Magnetic North is clockwise from True North)

	inplace (bool (default: True)) – When True the existing data object is modified. When False
a copy is returned.

	Returns:

	ds (xarray.Dataset or None) – Returns the rotated dataset when ``inplace=False``, otherwise
returns None.

Notes

This method modifies the data object in the following ways:

	If the dataset is in the earth reference frame at the time of

setting declination, it will be rotated into the “True-East,
True-North, Up” (hereafter, ETU) coordinate system

	dat['orientmat'] is modified to be an ETU to

instrument (XYZ) rotation matrix (rather than the magnetic-ENU to
XYZ rotation matrix). Therefore, all rotations to/from the ‘earth’
frame will now be to/from this ETU coordinate system.

	The value of the specified declination will be stored in

dat.attrs['declination']

	dat['heading'] is adjusted for declination

(i.e., it is relative to True North).

	If dat.attrs['principal_heading'] is set, it is

adjusted to account for the orientation of the new ‘True’
earth coordinate system (i.e., calling set_declination on a
data object in the principal coordinate system, then calling
dat.rotate2(‘earth’) will yield a data object in the new
‘True’ earth coordinate system)

	
set_inst2head_rotmat(rotmat, inplace=True)

	Set the instrument to head rotation matrix for the Nortek ADV if it
hasn’t already been set through a ‘.userdata.json’ file.

	Parameters:

	
	rotmat (float) – 3x3 rotation matrix

	inplace (bool (default: True)) – When True the existing data object is rotated. When False
a copy is returned that is rotated.

	Returns:

	ds (xarray.Dataset or None) – Returns the rotated dataset when ``inplace=False``, otherwise
returns None.

Notes

If the data object is in earth or principal coords, it is first
rotated to ‘inst’ before assigning inst2head_rotmat, it is then
rotated back to the coordinate system in which it was input. This
way the inst2head_rotmat gets applied correctly (in inst
coordinate system).

	
save(filename, **kwargs)

	Save the data object (underlying xarray dataset) as netCDF (.nc).

	Parameters:

	
	filename (str) – Filename and/or path with the ‘.nc’ extension

	**kwargs (these are passed directly to xarray.Dataset.to_netcdf().) –

Notes

See DOLfYN’s save function for
additional details.

	
property variables

	A sorted list of the variable names in the dataset.

	
property attrs

	The attributes in the dataset.

	
property coords

	The coordinates in the dataset.

	
property u

	The first velocity component.

This is simply a shortcut to self[‘vel’][0]. Therefore,
depending on the coordinate system of the data object
(self.attrs[‘coord_sys’]), it is:

	beam: beam1

	inst: x

	earth: east

	principal: streamwise

	
property v

	The second velocity component.

This is simply a shortcut to self[‘vel’][1]. Therefore,
depending on the coordinate system of the data object
(self.attrs[‘coord_sys’]), it is:

	beam: beam2

	inst: y

	earth: north

	principal: cross-stream

	
property w

	The third velocity component.
This is simply a shortcut to self[‘vel’][2]. Therefore,
depending on the coordinate system of the data object
(self.attrs[‘coord_sys’]), it is:
- beam: beam3
- inst: z
- earth: up
- principal: up

	
property U

	Horizontal velocity as a complex quantity

	
property U_mag

	Horizontal velocity magnitude

	
property U_dir

	Angle of horizontal velocity vector. Direction is ‘to’,
as opposed to ‘from’. This function calculates angle as
“degrees CCW from X/East/streamwise” and then converts it to
“degrees CW from X/North/streamwise”.

	
property E_coh

	Coherent turbulence energy

Niel Kelley’s ‘coherent turbulence energy’, which is the RMS
of the Reynold’s stresses.

See: NREL Technical Report TP-500-52353

	
property I_tke

	Turbulent kinetic energy intensity.

Ratio of sqrt(tke) to horizontal velocity magnitude.

	
property I

	Turbulence intensity.

Ratio of standard deviation of horizontal velocity
to horizontal velocity magnitude.

	
property tke

	Turbulent kinetic energy (sum of the three components)

	
property upvp_

	u’v’bar Reynolds stress

	
property upwp_

	u’w’bar Reynolds stress

	
property vpwp_

	v’w’bar Reynolds stress

	
property upup_

	u’u’bar component of the tke

	
property vpvp_

	v’v’bar component of the tke

	
property wpwp_

	w’w’bar component of the tke

	
class dolfyn.velocity.VelBinner(n_bin, fs, n_fft=None, n_fft_coh=None, noise=[0, 0, 0])

	Bases: TimeBinner

This is the base binning (averaging) tool.
All DOLfYN binning tools derive from this base class.

Examples

The VelBinner class is used to compute averages and turbulence
statistics from ‘raw’ (not averaged) ADV or ADP measurements, for
example:

First read or load some data.
rawdat = dolfyn.read_example('BenchFile01.ad2cp')

Now initialize the averaging tool:
binner = dolfyn.VelBinner(n_bin=600, fs=rawdat.fs)

This computes the basic averages
avg = binner.do_avg(rawdat)

Initialize an averaging object

	Parameters:

	
	n_bin (int) – Number of data points to include in a ‘bin’ (ensemble), not the
number of bins

	fs (int) – Instrument sampling frequency in Hz

	n_fft (int) – Number of data points to use for fft (n_fft`<=`n_bin).
Default: n_fft`=`n_bin

	n_fft_coh (int) – Number of data points to use for coherence and cross-spectra ffts
Default: n_fft_coh`=`n_fft

	noise (float, list or numpy.ndarray) – Instrument’s doppler noise in same units as velocity

	
tke = <xarray.DataArray 'tke' (tke: 3)> array(['upup_', 'vpvp_', 'wpwp_'], dtype='<U5') Dimensions without coordinates: tke Attributes: units: 1 long_name: Turbulent Kinetic Energy Vector Components coverage_content_type: coordinate

	

	
tau = <xarray.DataArray 'tau' (tau: 3)> array(['upvp_', 'upwp_', 'vpwp_'], dtype='<U5') Dimensions without coordinates: tau Attributes: units: 1 long_name: Reynolds Stress Vector Components coverage_content_type: coordinate

	

	
S = <xarray.DataArray 'S' (S: 3)> array(['Sxx', 'Syy', 'Szz'], dtype='<U3') Dimensions without coordinates: S Attributes: units: 1 long_name: Power Spectral Density Vector Components coverage_content_type: coordinate

	

	
C = <xarray.DataArray 'C' (C: 3)> array(['Cxy', 'Cxz', 'Cyz'], dtype='<U3') Dimensions without coordinates: C Attributes: units: 1 long_name: Cross-Spectral Density Vector Components coverage_content_type: coordinate

	

	
do_avg(raw_ds, out_ds=None, names=None)

	Bin the dataset and calculate the ensemble averages of each
variable.

	Parameters:

	
	raw_ds (xarray.Dataset) – The raw data structure to be binned

	out_ds (xarray.Dataset) – The bin’d (output) data object to which averaged data is added.

	names (list of strings) – The names of variables to be averaged. If names is None,
all data in raw_ds will be binned.

	Returns:

	out_ds (xarray.Dataset) – The new (or updated when out_ds is not None) dataset
with the averages of all the variables in raw_ds.

:raises AttributeError : when out_ds is supplied as input (not None):
:raises and the values in out_ds.attrs are inconsistent with:
:raises raw_ds.attrs or the properties of this VelBinner (n_bin,:
:raises n_fft, fs, etc.):

Notes

raw_ds.attrs are copied to out_ds.attrs. Inconsistencies
between the two (when out_ds is specified as input) raise an
AttributeError.

	
do_var(raw_ds, out_ds=None, names=None, suffix='_var')

	Bin the dataset and calculate the ensemble variances of each
variable. Complementary to do_avg().

	Parameters:

	
	raw_ds (xarray.Dataset) – The raw data structure to be binned.

	out_ds (xarray.Dataset) – The binned (output) dataset to which variance data is added,
nominally dataset output from do_avg()

	names (list of strings) – The names of variables of which to calculate variance. If
names is None, all data in raw_ds will be binned.

	Returns:

	out_ds (xarray.Dataset) – The new (or updated when out_ds is not None) dataset
with the variance of all the variables in raw_ds.

:raises AttributeError : when out_ds is supplied as input (not None):
:raises and the values in out_ds.attrs are inconsistent with:
:raises raw_ds.attrs or the properties of this VelBinner (n_bin,:
:raises n_fft, fs, etc.):

Notes

raw_ds.attrs are copied to out_ds.attrs. Inconsistencies
between the two (when out_ds is specified as input) raise an
AttributeError.

	
calc_coh(veldat1, veldat2, window='hann', debias=True, noise=(0, 0), n_fft_coh=None, n_bin=None)

	Calculate coherence between veldat1 and veldat2.

	Parameters:

	
	veldat1 (xarray.DataArray) – The first (the longer, if applicable) raw dataArray of which to
calculate coherence

	veldat2 (xarray.DataArray) – The second (the shorter, if applicable) raw dataArray of which to
calculate coherence

	window (str) – String indicating the window function to use (default: ‘hanning’)

	noise (float) – The white-noise level of the measurement (in the same units
as veldat).

	n_fft_coh (int) – n_fft of veldat2, number of elements per bin if ‘None’ is taken
from VelBinner

	n_bin (int) – n_bin of veldat2, number of elements per bin if ‘None’ is taken
from VelBinner

	Returns:

	da (xarray.DataArray) – The coherence between signal veldat1 and veldat2.

Notes

The two velocity inputs do not have to be perfectly synchronized, but
they should have the same start and end timestamps.

	
calc_phase_angle(veldat1, veldat2, window='hann', n_fft_coh=None, n_bin=None)

	Calculate the phase difference between two signals as a
function of frequency (complimentary to coherence).

	Parameters:

	
	veldat1 (xarray.DataArray) – The first (the longer, if applicable) raw dataArray of which to
calculate phase angle

	veldat2 (xarray.DataArray) – The second (the shorter, if applicable) raw dataArray of which
to calculate phase angle

	window (str) – String indicating the window function to use (default: ‘hanning’).

	n_fft (int) – Number of elements per bin if ‘None’ is taken from VelBinner

	n_bin (int) – Number of elements per bin from veldat2 if ‘None’ is taken
from VelBinner

	Returns:

	da (xarray.DataArray) – The phase difference between signal veldat1 and veldat2.

Notes

The two velocity inputs do not have to be perfectly synchronized, but
they should have the same start and end timestamps.

	
calc_acov(veldat, n_bin=None)

	Calculate the auto-covariance of the raw-signal veldat

	Parameters:

	
	veldat (xarray.DataArray) – The raw dataArray of which to calculate auto-covariance

	n_bin (float) – Number of data elements to use

	Returns:

	da (xarray.DataArray) – The auto-covariance of veldat

Notes

As opposed to calc_xcov, which returns the full
cross-covariance between two arrays, this function only
returns a quarter of the full auto-covariance. It computes the
auto-covariance over half of the range, then averages the two
sides (to return a ‘quartered’ covariance).

This has the advantage that the 0 index is actually zero-lag.

	
calc_xcov(veldat1, veldat2, npt=1, n_bin=None, normed=False)

	Calculate the cross-covariance between arrays veldat1 and veldat2

	Parameters:

	
	veldat1 (xarray.DataArray) – The first raw dataArray of which to calculate cross-covariance

	veldat2 (xarray.DataArray) – The second raw dataArray of which to calculate cross-covariance

	npt (int) – Number of timesteps (lag) to calculate covariance

	n_fft (int) – n_fft of veldat2, number of elements per bin if ‘None’ is taken
from VelBinner

	n_bin (int) – n_bin of veldat2, number of elements per bin if ‘None’ is taken
from VelBinner

	Returns:

	da (xarray.DataArray) – The cross-covariance between signal veldat1 and veldat2.

Notes

The two velocity inputs must be the same length

	
calc_tke(veldat, noise=None, detrend=True)

	Calculate the turbulent kinetic energy (TKE) (variances
of u,v,w).

	Parameters:

	
	veldat (xarray.DataArray) – Velocity data array from ADV or single beam from ADCP.
The last dimension is assumed to be time.

	noise (float or array-like) – A vector of the noise levels of the velocity data with
the same first dimension as the velocity vector.

	detrend (bool (default: False)) – Detrend the velocity data (True), or simply de-mean it
(False), prior to computing tke. Note: the psd routines
use detrend, so if you want to have the same amount of
variance here as there use detrend=True.

	Returns:

	tke_vec (xarray.DataArray) – dataArray containing u’u’_, v’v’_ and w’w’_

	
calc_psd(veldat, freq_units='rad/s', fs=None, window='hann', noise=None, n_bin=None, n_fft=None, n_pad=None, step=None)

	Calculate the power spectral density of velocity.

	Parameters:

	
	veldat (xr.DataArray) – The raw velocity data (of dims ‘dir’ and ‘time’).

	freq_units (string) – Frequency units of the returned spectra in either Hz or rad/s
(f or \(\omega\))

	fs (float (optional)) – The sample rate (default: from the binner).

	window (string or array) – Specify the window function.
Options: 1, None, ‘hann’, ‘hamm’

	noise (float or array-like) – A vector of the noise levels of the velocity data with
the same first dimension as the velocity vector.

	n_bin (int (optional)) – The bin-size (default: from the binner).

	n_fft (int (optional)) – The fft size (default: from the binner).

	n_pad (int (optional)) – The number of values to pad with zero (default: 0)

	step (int (optional)) – Controls amount of overlap in fft (default: the step size is
chosen to maximize data use, minimize nens, and have a
minimum of 50% overlap.).

	Returns:

	psd (xarray.DataArray (3, M, N_FFT)) – The spectra in the ‘u’, ‘v’, and ‘w’ directions.

	
class dolfyn.adv.turbulence.ADVBinner(n_bin, fs, n_fft=None, n_fft_coh=None, noise=[0, 0, 0])

	Bases: VelBinner

A class that builds upon VelBinner for calculating turbulence
statistics and velocity spectra from ADV data

	Parameters:

	
	n_bin (int) – The length of each bin, in number of points, for this averaging
operator.

	fs (int) – Instrument sampling frequency in Hz

	n_fft (int (optional, default: n_fft = n_bin)) – The length of the FFT for computing spectra (must be <= n_bin)

	n_fft_coh (int (optional, default: n_fft_coh`=`n_fft)) – Number of data points to use for coherence and cross-spectra ffts

	noise (float, list or numpy.ndarray) – Instrument’s doppler noise in same units as velocity

Initialize an averaging object

	Parameters:

	
	n_bin (int) – Number of data points to include in a ‘bin’ (ensemble), not the
number of bins

	fs (int) – Instrument sampling frequency in Hz

	n_fft (int) – Number of data points to use for fft (n_fft`<=`n_bin).
Default: n_fft`=`n_bin

	n_fft_coh (int) – Number of data points to use for coherence and cross-spectra ffts
Default: n_fft_coh`=`n_fft

	noise (float, list or numpy.ndarray) – Instrument’s doppler noise in same units as velocity

	
__call__(ds, freq_units='rad/s', window='hann')

	Call self as a function.

	
calc_stress(veldat, detrend=True)

	Calculate the stresses (covariances of u,v,w)

	Parameters:

	
	veldat (xr.DataArray) – Velocity data array from ADV data. The last dimension is
assumed to be time.

	detrend (bool (default: True)) – detrend the velocity data (True), or simply de-mean it
(False), prior to computing stress. Note: the psd routines
use detrend, so if you want to have the same amount of
variance here as there use detrend=True.

	Returns:

	out (xarray.DataArray)

	
calc_csd(veldat, freq_units='rad/s', fs=None, window='hann', n_bin=None, n_fft_coh=None)

	Calculate the cross-spectral density of velocity components.

	Parameters:

	
	veldat (xarray.DataArray) – The raw 3D velocity data.

	freq_units (string) – Frequency units of the returned spectra in either Hz or rad/s
(f or \(\omega\))

	fs (float (optional)) – The sample rate (default: from the binner).

	window (string or array) – Specify the window function.
Options: 1, None, ‘hann’, ‘hamm’

	n_bin (int (optional)) – The bin-size (default: from the binner).

	n_fft_coh (int (optional)) – The fft size (default: n_fft_coh from the binner).

	Returns:

	csd (xarray.DataArray (3, M, N_FFT)) – The first-dimension of the cross-spectrum is the three
different cross-spectra: ‘uv’, ‘uw’, ‘vw’.

	
calc_doppler_noise(psd, pct_fN=0.8)

	Calculate bias due to Doppler noise using the noise floor
of the velocity spectra.

	Parameters:

	
	psd (xarray.DataArray (dir, time, f)) – The ADV velocity spectra

	pct_fN (float) – Percent of Nyquist frequency to calculate characeristic frequency

	Returns:

	doppler_noise (xarray.DataArray) – Doppler noise level in units of m/s

Notes

Approximates bias from

where :math: sigma_{noise} is the bias due to Doppler noise,
N is the constant variance or spectral density, and f_{c}
is the characteristic frequency.

The characteristic frequency is then found as

where f_{s}/2 is the Nyquist frequency.

Richard, Jean-Baptiste, et al. “Method for identification of Doppler noise
levels in turbulent flow measurements dedicated to tidal energy.” International
Journal of Marine Energy 3 (2013): 52-64.

Thiébaut, Maxime, et al. “Investigating the flow dynamics and turbulence at a
tidal-stream energy site in a highly energetic estuary.” Renewable Energy 195
(2022): 252-262.

	
check_turbulence_cascade_slope(psd, freq_range=[6.28, 12.57])

	This function calculates the slope of the PSD, the power spectra
of velocity, within the given frequency range. The purpose of this
function is to check that the region of the PSD containing the
isotropic turbulence cascade decreases at a rate of \(f^{-5/3}\).

	Parameters:

	
	psd (xarray.DataArray ([time,] freq)) – The power spectral density (1D or 2D)

	freq_range (iterable(2) (default: [6.28, 12.57])) – The range over which the isotropic turbulence cascade occurs, in
units of the psd frequency vector (Hz or rad/s)

	Returns:

	(m, b) (tuple (slope, y-intercept)) – A tuple containing the coefficients of the log-adjusted linear
regression between PSD and frequency

Notes

Calculates slope based on the standard formula for dissipation:

\[S(k) = \alpha \epsilon^{2/3} k^{-5/3} + N\]

The slope of the isotropic turbulence cascade, which should be
equal to \(k^{-5/3}\) or \(f^{-5/3}\), where k and f are
the wavenumber and frequency vectors, is estimated using linear
regression with a log transformation:

\[log10(y) = m*log10(x) + b\]

Which is equivalent to

\[y = 10^{b} x^{m}\]

Where \(y\) is S(k) or S(f), \(x\) is k or f, \(m\)
is the slope (ideally -5/3), and \(10^{b}\) is the intercept of
y at x^m=1.

	
calc_epsilon_LT83(psd, U_mag, freq_range=[6.28, 12.57])

	Calculate the dissipation rate from the PSD

	Parameters:

	
	psd (xarray.DataArray (...,time,freq)) – The power spectral density

	U_mag (xarray.DataArray (...,time)) – The bin-averaged horizontal velocity [m s-1] (from dataset shortcut)

	freq_range (iterable(2) (default: [6.28, 12.57])) – The range over which to integrate/average the spectrum, in units
of the psd frequency vector (Hz or rad/s)

	Returns:

	epsilon (xarray.DataArray (…,n_time)) – dataArray of the dissipation rate

Notes

This uses the standard formula for dissipation:

\[S(k) = \alpha \epsilon^{2/3} k^{-5/3} + N\]

where \(\alpha = 0.5\) (1.5 for all three velocity
components), k is wavenumber, S(k) is the turbulent
kinetic energy spectrum, and `N’ is the doppler noise level
associated with the TKE spectrum.

With \(k \rightarrow \omega / U\), then – to preserve variance –
\(S(k) = U S(\omega)\), and so this becomes:

\[S(\omega) = \alpha \epsilon^{2/3} \omega^{-5/3} U^{2/3} + N\]

With \(k \rightarrow (2\pi f) / U\), then

\[S(\omega) = \alpha \epsilon^{2/3} f^{-5/3} (U/(2\pi))^{2/3} + N\]

LT83 : Lumley and Terray, “Kinematics of turbulence convected
by a random wave field”. JPO, 1983, vol13, pp2000-2007.

	
calc_epsilon_SF(vel_raw, U_mag, fs=None, freq_range=[2.0, 4.0])

	Calculate dissipation rate using the “structure function” (SF) method

	Parameters:

	
	vel_raw (xarray.DataArray) – The raw velocity data (1D dimension time) upon
which to perform the SF technique.

	U_mag (xarray.DataArray) – The bin-averaged horizontal velocity (from dataset shortcut)

	fs (float) – The sample rate of vel_raw [Hz]

	freq_range (iterable(2) (default: [2., 4.])) – The frequency range over which to compute the SF [Hz]
(i.e. the frequency range within which the isotropic
turbulence cascade falls)

	Returns:

	epsilon (xarray.DataArray) – dataArray of the dissipation rate

	
calc_epsilon_TE01(dat_raw, dat_avg, freq_range=[6.28, 12.57])

	Calculate the dissipation rate according to TE01.

	Parameters:

	
	dat_raw (xarray.Dataset) – The raw (off the instrument) adv dataset

	dat_avg (xarray.Dataset) – The bin-averaged adv dataset (calc’d from ‘calc_turbulence’ or
‘do_avg’). The spectra (psd) and basic turbulence statistics
(‘tke_vec’ and ‘stress_vec’) must already be computed.

	freq_range (iterable(2) (default: [6.28, 12.57])) – The range over which to integrate/average the spectrum, in units
of the psd frequency vector (Hz or rad/s)

Notes

TE01 : Trowbridge, J and Elgar, S, “Turbulence measurements in
the Surf Zone”. JPO, 2001, vol31, pp2403-2417.

	
calc_L_int(a_cov, U_mag, fs=None)

	Calculate integral length scales.

	Parameters:

	
	a_cov (xarray.DataArray) – The auto-covariance array (i.e. computed using calc_acov).

	U_mag (xarray.DataArray) – The bin-averaged horizontal velocity (from dataset shortcut)

	fs (float) – The raw sample rate

	Returns:

	L_int (|np.ndarray| (…, n_time)) – The integral length scale (T_int*U_mag).

Notes

The integral time scale (T_int) is the lag-time at which the
auto-covariance falls to 1/e.

If T_int is not reached, L_int will default to ‘0’.

	
dolfyn.adv.turbulence.calc_turbulence(ds_raw, n_bin, fs, n_fft=None, freq_units='rad/s', window='hann')

	Functional version of ADVBinner that computes a suite of turbulence
statistics for the input dataset, and returns a binned data object.

	Parameters:

	
	ds_raw (xarray.Dataset) – The raw adv datset to bin, average and compute
turbulence statistics of.

	freq_units (string (default: rad/s)) – Frequency units of the returned spectra in either Hz or rad/s
(f or \(\omega\))

	window (1, None, 'hann', 'hamm') – The window to use for calculating power spectral densities

	Returns:

	ds (xarray.Dataset) – Returns an ‘binned’ (i.e. ‘averaged’) data object. All
fields (variables) of the input data object are averaged in n_bin
chunks. This object also computes the following items over
those chunks:

	tke_vec : The energy in each component, each components is
alternatively accessible as:
upup_,
vpvp_,
wpwp_)

	stress_vec : The Reynolds stresses, each component is
alternatively accessible as:
upwp_,
vpwp_,
upvp_)

	U_std : The standard deviation of the horizontal
velocity U_mag.

	psd : DataArray containing the spectra of the velocity
in radial frequency units. The data-array contains:
- vel : the velocity spectra array (m^2/s/rad))
- omega : the radial frequncy (rad/s)

	
class dolfyn.adp.turbulence.ADPBinner(n_bin, fs, n_fft=None, n_fft_coh=None, noise=None, orientation='up', diff_style='centered_extended')

	Bases: VelBinner

A class for calculating turbulence statistics from ADCP data

	Parameters:

	
	n_bin (int) – Number of data points to include in a ‘bin’ (ensemble), not the
number of bins

	fs (int) – Instrument sampling frequency in Hz

	n_fft (int) – Number of data points to use for fft (n_fft`<=`n_bin).
Default: n_fft`=`n_bin

	n_fft_coh (int) – Number of data points to use for coherence and cross-spectra ffts
Default: n_fft_coh`=`n_fft

	noise (float, list or numpy.ndarray) – Instrument’s doppler noise in same units as velocity

	orientation (str, default='up') – Instrument’s orientation, either ‘up’ or ‘down’

	diff_style (str, default='centered_extended') – Style of numerical differentiation using Newton’s Method.
Either ‘first’ (first difference), ‘centered’ (centered difference),
or ‘centered_extended’ (centered difference with first and last points

extended using a first difference).

	
calc_dudz(vel, orientation=None)

	The shear in the first velocity component.

	Parameters:

	
	vel (xarray.DataArray) – ADCP raw velocity

	orientation (str, default=ADPBinner.orientation) – Direction ADCP is facing (‘up’ or ‘down’)

Notes

The derivative direction is along the profiler’s ‘z’
coordinate (‘dz’ is actually diff(self[‘range’])), not necessarily the
‘true vertical’ direction.

	
calc_dvdz(vel)

	The shear in the second velocity component.

	Parameters:

	vel (xarray.DataArray) – ADCP raw velocity

Notes

The derivative direction is along the profiler’s ‘z’
coordinate (‘dz’ is actually diff(self[‘range’])), not necessarily the
‘true vertical’ direction.

	
calc_dwdz(vel)

	The shear in the third velocity component.

	Parameters:

	vel (xarray.DataArray) – ADCP raw velocity

Notes

The derivative direction is along the profiler’s ‘z’
coordinate (‘dz’ is actually diff(self[‘range’])), not necessarily the
‘true vertical’ direction.

	
calc_shear2(vel)

	The horizontal shear squared.

	Parameters:

	vel (xarray.DataArray) – ADCP raw velocity

Notes

This is actually (dudz)^2 + (dvdz)^2. So, if those variables
are not actually vertical derivatives of the horizontal
velocity, then this is not the ‘horizontal shear squared’.

See also

\(dudz\), \(dvdz\)

	
calc_doppler_noise(psd, pct_fN=0.8)

	Calculate bias due to Doppler noise using the noise floor
of the velocity spectra.

	Parameters:

	
	psd (xarray.DataArray (time, f)) – The velocity spectra from a single depth bin (range), typically
in the mid-water range

	pct_fN (float) – Percent of Nyquist frequency to calculate characeristic frequency

	Returns:

	doppler_noise (xarray.DataArray) – Doppler noise level in units of m/s

Notes

Approximates bias from

where :math: sigma_{noise} is the bias due to Doppler noise,
N is the constant variance or spectral density, and f_{c}
is the characteristic frequency.

The characteristic frequency is then found as

where f_{s}/2 is the Nyquist frequency.

Richard, Jean-Baptiste, et al. “Method for identification of Doppler noise
levels in turbulent flow measurements dedicated to tidal energy.” International
Journal of Marine Energy 3 (2013): 52-64.

Thiébaut, Maxime, et al. “Investigating the flow dynamics and turbulence at a
tidal-stream energy site in a highly energetic estuary.” Renewable Energy 195
(2022): 252-262.

	
calc_stress_4beam(ds, noise=None, orientation=None, beam_angle=None)

	Calculate the stresses from the covariance of along-beam
velocity measurements

	Parameters:

	
	ds (xarray.Dataset) – Raw dataset in beam coordinates

	noise (int or xarray.DataArray (time)) – Doppler noise level in units of m/s

	orientation (str, default=ds.attrs['orientation']) – Direction ADCP is facing (‘up’ or ‘down’)

	beam_angle (int, default=ds.attrs['beam_angle']) – ADCP beam angle in units of degrees

	Returns:

	stress_vec (xarray.DataArray(s)) – Stress vector with u’w’_ and v’w’_ components

Notes

Assumes zero mean pitch and roll.

Assumes ADCP instrument coordinate system is aligned with principal flow
directions.

Stacey, Mark T., Stephen G. Monismith, and Jon R. Burau. “Measurements
of Reynolds stress profiles in unstratified tidal flow.” Journal of
Geophysical Research: Oceans 104.C5 (1999): 10933-10949.

	
calc_stress_5beam(ds, noise=None, orientation=None, beam_angle=None, tke_only=False)

	Calculate the stresses from the covariance of along-beam
velocity measurements

	Parameters:

	
	ds (xarray.Dataset) – Raw dataset in beam coordinates

	noise (int or xarray.DataArray, default=0 (time)) – Doppler noise level in units of m/s

	orientation (str, default=ds.attrs['orientation']) – Direction ADCP is facing (‘up’ or ‘down’)

	beam_angle (int, default=ds.attrs['beam_angle']) – ADCP beam angle in units of degrees

	tke_only (bool, default=False) – If true, only calculates tke components

	Returns:

	tke_vec(, stress_vec) (xarray.DataArray or tuple[xarray.DataArray]) – If tke_only is set to False, function returns tke_vec and stress_vec.
Otherwise only tke_vec is returned

Notes

Assumes small-angle approximation is applicable.

Assumes ADCP instrument coordinate system is aligned with principal flow
directions, i.e. u’, v’ and w’ are aligned to the instrument’s (XYZ)
frame of reference.

The stress equations here utilize u’v’_ to account for small variations
in pitch and roll. u’v’_ cannot be directly calculated by a 5-beam ADCP,
so it is approximated by the covariance of u and v. The uncertainty
introduced by using this approximation is small if deviations from pitch
and roll are small (< 10 degrees).

Dewey, R., and S. Stringer. “Reynolds stresses and turbulent kinetic
energy estimates from various ADCP beam configurations: Theory.” J. of
Phys. Ocean (2007): 1-35.

Guerra, Maricarmen, and Jim Thomson. “Turbulence measurements from
five-beam acoustic Doppler current profilers.” Journal of Atmospheric
and Oceanic Technology 34.6 (2017): 1267-1284.

	
calc_total_tke(ds, noise=None, orientation=None, beam_angle=None)

	Calculate magnitude of turbulent kinetic energy from 5-beam ADCP.

	Parameters:

	
	ds (xarray.Dataset) – Raw dataset in beam coordinates

	ds_avg (xarray.Dataset) – Binned dataset in final coordinate reference frame

	noise (int or xarray.DataArray, default=0 (time)) – Doppler noise level in units of m/s

	orientation (str, default=ds.attrs['orientation']) – Direction ADCP is facing (‘up’ or ‘down’)

	beam_angle (int, default=ds.attrs['beam_angle']) – ADCP beam angle in units of degrees

	Returns:

	tke (xarray.DataArray) – Turbulent kinetic energy magnitude

Notes

This function is a wrapper around ‘calc_stress_5beam’ that then
combines the TKE components.

Warning: the integral length scale of turbulence captured by the
ADCP measurements (i.e. the size of turbulent structures) increases
with increasing range from the instrument.

	
check_turbulence_cascade_slope(psd, freq_range=[0.2, 0.4])

	This function calculates the slope of the PSD, the power spectra
of velocity, within the given frequency range. The purpose of this
function is to check that the region of the PSD containing the
isotropic turbulence cascade decreases at a rate of \(f^{-5/3}\).

	Parameters:

	
	psd (xarray.DataArray ([[range,] time,] freq)) – The power spectral density (1D, 2D or 3D)

	freq_range (iterable(2) (default: [6.28, 12.57])) – The range over which the isotropic turbulence cascade occurs, in
units of the psd frequency vector (Hz or rad/s)

	Returns:

	(m, b) (tuple (slope, y-intercept)) – A tuple containing the coefficients of the log-adjusted linear
regression between PSD and frequency

Notes

Calculates slope based on the standard formula for dissipation:

\[S(k) = \alpha \epsilon^{2/3} k^{-5/3} + N\]

The slope of the isotropic turbulence cascade, which should be
equal to \(k^{-5/3}\) or \(f^{-5/3}\), where k and f are
the wavenumber and frequency vectors, is estimated using linear
regression with a log transformation:

\[log10(y) = m*log10(x) + b\]

Which is equivalent to

\[y = 10^{b} x^{m}\]

Where \(y\) is S(k) or S(f), \(x\) is k or f, \(m\)
is the slope (ideally -5/3), and \(10^{b}\) is the intercept of
y at x^m=1.

	
calc_dissipation_LT83(psd, U_mag, freq_range=[0.2, 0.4])

	Calculate the TKE dissipation rate from the velocity spectra.

	Parameters:

	
	psd (xarray.DataArray (time,f)) – The power spectral density from a single depth bin (range)

	U_mag (xarray.DataArray (time)) – The bin-averaged horizontal velocity (a.k.a. speed) from a single depth bin (range)

	noise (int or xarray.DataArray, default=0 (time)) – Doppler noise level in units of m/s

	f_range (iterable(2)) – The range over which to integrate/average the spectrum, in units
of the psd frequency vector (Hz or rad/s)

	Returns:

	dissipation_rate (xarray.DataArray (…,n_time)) – Turbulent kinetic energy dissipation rate

Notes

This uses the standard formula for dissipation:

\[S(k) = \alpha \epsilon^{2/3} k^{-5/3} + N\]

where \(\alpha = 0.5\) (1.5 for all three velocity
components), k is wavenumber, S(k) is the turbulent
kinetic energy spectrum, and `N’ is the doppler noise level
associated with the TKE spectrum.

With \(k \rightarrow \omega / U\), then – to preserve variance –
\(S(k) = U S(\omega)\), and so this becomes:

\[S(\omega) = \alpha \epsilon^{2/3} \omega^{-5/3} U^{2/3} + N\]

With \(k \rightarrow (2\pi f) / U\), then

\[S(\omega) = \alpha \epsilon^{2/3} f^{-5/3} (U/(2*\pi))^{2/3} + N\]

LT83 : Lumley and Terray, “Kinematics of turbulence convected
by a random wave field”. JPO, 1983, vol13, pp2000-2007.

	
calc_dissipation_SF(vel_raw, r_range=[1, 5])

	Calculate TKE dissipation rate from ADCP along-beam velocity using the
“structure function” (SF) method.

	Parameters:

	
	vel_raw (xarray.DataArray) – The raw beam velocity data (one beam, last dimension time) upon
which to perform the SF technique.

	r_range (numeric, default=[1,5]) – Range of r in [m] to calc dissipation across. Low end of range should be
bin size, upper end of range is limited to the length of largest eddies
in the inertial subrange.

	Returns:

	
	dissipation_rate (xarray.DataArray (range, time)) – Dissipation rate estimated from the structure function

	noise (xarray.DataArray (range, time)) – Noise offset estimated from the structure function at r = 0

	structure_function (xarray.DataArray (range, r, time)) – Structure function D(z,r)

Notes

Dissipation rate outputted by this function is only valid if the isotropic
turbulence cascade can be seen in the TKE spectra.

Velocity data must be in beam coordinates and should be cleaned of surface
interference.

This method calculates the 2nd order structure function:

\[D(z,r) = [(u'(z) - u`(z+r))^2]\]

where u’ is the velocity fluctuation z is the depth bin,
r is the separation between depth bins, and [] denotes a time average
(size ‘ADPBinner.n_bin’).

The stucture function can then be used to estimate the dissipation rate:

\[D(z,r) = C^2 \epsilon^{2/3} r^{2/3} + N\]

where C is a constant (set to 2.1), epsilon is the dissipation rate,
and N is the offset due to noise. Noise is then calculated by

\[\sigma = (N/2)^{1/2}\]

Wiles, et al, “A novel technique for measuring the rate of
turbulent dissipation in the marine environment”
GRL, 2006, 33, L21608.

	
calc_ustar_fit(ds_avg, upwp_, z_inds=slice(1, 5, None), H=None)

	Approximate friction velocity from shear stress using a
logarithmic profile.

	Parameters:

	
	ds_avg (xarray.Dataset) – Bin-averaged dataset containing stress_vec

	upwp (xarray.DataArray) – First component of Reynolds shear stress vector, “u-prime v-prime bar”
Ex ds_avg[‘stress_vec’].sel(tau=’upwp_’)

	z_inds (slice(int,int)) – Depth indices to use for profile. Default = slice(1, 5)

	H (int (default=`ds_avg.depth`)) – Total water depth

	Returns:

	u_star (xarray.DataArray) – Friction velocity

Data Shortcuts (Properties)

DOLfYN datasets also contain shortcuts to other variables that can be obtained
from simple operations of its data items. Certain shortcuts require variables
calculated using the DOLfYN API.

Table 4 Notes on common properties found in DOLfYN data objects.

	Name

	units

	Description/Notes

	u

	m/s

	dat['vel'][0]

	v

	m/s

	dat['vel'][1]

	w

	m/s

	dat['vel'][2]

	U

	m/s

	Horizontal velocity as a complex quantity (u + 1j * v)

	U_mag

	m/s

	Magnitude of the horizontal velocity

	U_dir

	deg

	Direction of the horizontal velocity (CCW from X, East, or streamwise direction, depending on coordinate system)

	I

	—

	Turbulence Intensity: ratio of horizontal velocity standard deviation (U_std) to mean (‘U_mag’)

	I_tke

	—

	TKE Intensity: Ratio of sqrt(2*tke) to horizontal velocity magnitude

	tke

	m2/s2

	Turbulent kinetic energy (half the sum of the data in ‘tke_vec’)

	E_coh

	m2/s2

	Coherent TKE (root-sum-square of Reynold’s stresses)

	upup_

	m2/s2

	dat['tke_vec'].sel(tke="upup_")

	vpvp_

	m2/s2

	dat['tke_vec'].sel(tke="vpvp_")

	wpwp_

	m2/s2

	dat['tke_vec'].sel(tke="wpwp_")

	upvp_

	m2/s2

	dat['stress_vec'].sel(tau="upvp_")

	upwp_

	m2/s2

	dat['stress_vec'].sel(tau="upwp_")

	vpwp_

	m2/s2

	dat['stress_vec'].sel(tau="vpwp_")

Important Note: The items listed in Table 4 are not stored in the dataset
but are provided as attributes (shortcuts) to the dataset itself.
They are accessed through the xarray accessor [http://xarray.pydata.org/en/stable/internals/extending-xarray.html] velds.

For example, to return the magnitude of the horizontal velocity:

>> import dolfyn
>> dat = dolfyn.read_example('AWAC_test01.wpr')

>> dat.velds.U_mag

<xarray.DataArray 'vel' (range: 20, time: 9997)>
array([[1.12594587, 0.82454599, 0.96503734, ..., 3.40359042, 3.34527587,
 3.44412805],
 [0.86688534, 1.05108722, 1.12899632, ..., 0.72053462, 6.47548786,
 0.49120468],
 [0.88066635, 0.97954744, 0.63123135, ..., 4.37153751, 2.77540426,
 1.81550287],
 ...,
 [1.00013206, 1.21381814, 1.14834231, ..., 5.89236205, 1.44082763,
 2.7157082],
 [0.7759962 , 0.89600228, 1.02900833, ..., 2.39949021, 2.18758737,
 4.41797285],
 [0.95729835, 1.15594339, 1.15038508, ..., 3.11517746, 3.79158362,
 2.66788512]])
Coordinates:
 * range (range) float32 1.41 2.41 3.4 4.4 5.4 ... 17.36 18.36 19.35 20.35
 * time (time) float64 1.34e+09 1.34e+09 1.34e+09 ... 1.34e+09 1.34e+09
Attributes:
 units: m/s
 description: horizontal velocity magnitude

Time Conversion

Time is handled primary in epoch time, or seconds since 1/1/1970,
and includes conversion to Unix timestamps, datetime objects, and
MATLAB datenum.

	dt642epoch(dt64)

	Convert numpy.datetime64 array to epoch time (seconds since 1/1/1970 00:00:00)

	epoch2dt64(ep_time)

	Convert from epoch time (seconds since 1/1/1970 00:00:00) to numpy.datetime64 array

	dt642date(dt64)

	Convert numpy.datetime64 array to list of datetime objects

	date2dt64(dt)

	Convert numpy.datetime64 array to list of datetime objects

	epoch2date(ep_time[, offset_hr, to_str])

	Convert from epoch time (seconds since 1/1/1970 00:00:00) to a list of datetime objects

	date2epoch(dt)

	Convert list of datetime objects to epoch time

	date2str(dt[, format_str])

	Convert list of datetime objects to legible strings

	date2matlab(dt)

	Convert list of datetime objects to MATLAB datenum

	matlab2date(matlab_dn)

	Convert MATLAB datenum to list of datetime objects

	
dolfyn.time.epoch2dt64(ep_time)

	Convert from epoch time (seconds since 1/1/1970 00:00:00)
to numpy.datetime64 array

	Parameters:

	ep_time (xarray.DataArray) – Time coordinate data-array or single time element

	Returns:

	time (numpy.datetime64) – The converted datetime64 array

	
dolfyn.time.dt642epoch(dt64)

	Convert numpy.datetime64 array to epoch time
(seconds since 1/1/1970 00:00:00)

	Parameters:

	dt64 (numpy.datetime64) – Single or array of datetime64 object(s)

	Returns:

	time (float) – Epoch time (seconds since 1/1/1970 00:00:00)

	
dolfyn.time.date2dt64(dt)

	Convert numpy.datetime64 array to list of datetime objects

	Parameters:

	time (datetime.datetime) – The converted datetime object

	Returns:

	dt64 (numpy.datetime64) – Single or array of datetime64 object(s)

	
dolfyn.time.dt642date(dt64)

	Convert numpy.datetime64 array to list of datetime objects

	Parameters:

	dt64 (numpy.datetime64) – Single or array of datetime64 object(s)

	Returns:

	time (datetime.datetime) – The converted datetime object

	
dolfyn.time.epoch2date(ep_time, offset_hr=0, to_str=False)

	Convert from epoch time (seconds since 1/1/1970 00:00:00) to a list
of datetime objects

	Parameters:

	
	ep_time (xarray.DataArray) – Time coordinate data-array or single time element

	offset_hr (int) – Number of hours to offset time by (e.g. UTC -7 hours = PDT)

	to_str (logical) – Converts datetime object to a readable string

	Returns:

	time (datetime.datetime) – The converted datetime object or list(strings)

Notes

The specific time instance is set during deployment, usually sync’d to the
deployment computer. The time seen by DOLfYN is in the timezone of the
deployment computer, which is unknown to DOLfYN.

	
dolfyn.time.date2str(dt, format_str=None)

	Convert list of datetime objects to legible strings

	Parameters:

	
	dt (datetime.datetime) – Single or list of datetime object(s)

	format_str (string) – Timestamp string formatting, default: ‘%Y-%m-%d %H:%M:%S.%f’.
See datetime.strftime documentation for timestamp string formatting

	Returns:

	time (string) – Converted timestamps

	
dolfyn.time.date2epoch(dt)

	Convert list of datetime objects to epoch time

	Parameters:

	dt (datetime.datetime) – Single or list of datetime object(s)

	Returns:

	time (float) – Datetime converted to epoch time (seconds since 1/1/1970 00:00:00)

	
dolfyn.time.date2matlab(dt)

	Convert list of datetime objects to MATLAB datenum

	Parameters:

	dt (datetime.datetime) – List of datetime objects

	Returns:

	time (float) – List of timestamps in MATLAB datnum format

	
dolfyn.time.matlab2date(matlab_dn)

	Convert MATLAB datenum to list of datetime objects

	Parameters:

	matlab_dn (float) – List of timestamps in MATLAB datnum format

	Returns:

	dt (datetime.datetime) – List of datetime objects

Tools

Spectral analysis and miscellaneous DOLfYN functions are stored here.
These functions are used throughout DOLfYN’s core code and may also be
helpful to users in general.

FFT-based Functions:

	psd_freq

	Compute the frequency for vector for a nfft and fs.

	stepsize

	Calculates the fft-step size for a length l array.

	coherence

	Computes the magnitude-squared coherence of a and b.

	phase_angle

	Compute the phase difference between signals a and b.

	psd

	Compute the power spectral density (PSD).

	cpsd

	Compute the cross power spectral density (CPSD) of the signals a and b.

	cpsd_quasisync

	Compute the cross power spectral density (CPSD) of the signals a and b.

Other Functions:

	detrend

	Remove a linear trend from arr.

	group

	Find continuous segments in a boolean array.

	slice1d_along_axis

	Return an iterator object for looping over 1-D slices, along axis, of an array of shape arr_shape.

	fillgaps

	Linearly fill NaN value in an array.

	interpgaps

	Fill gaps (NaN values) in a by linear interpolation along dimension dim with the point spacing specified in t.

	medfiltnan

	Do a running median filter of the data.

	convert_degrees

	Converts between the 'cartesian angle' (counter-clockwise from East) and the 'polar angle' in (degrees clockwise from North)

	
dolfyn.tools.psd.psd_freq(nfft, fs, full=False)

	Compute the frequency for vector for a nfft and fs.

	Parameters:

	
	fs (float) – The sampling frequency (e.g. samples/sec)

	nfft (int) – The number of samples in a window.

	full (bool (default: False)) – Whether to return half frequencies (positive), or the full frequencies.

	Returns:

	freq (|np.ndarray|) – The frequency vector, in same units as ‘fs’

	
dolfyn.tools.psd.stepsize(l, nfft, nens=None, step=None)

	Calculates the fft-step size for a length l array.

If nens is None, the step size is chosen to maximize data use,
minimize nens and have a minimum of 50% overlap.

If nens is specified, the step-size is computed directly.

	Parameters:

	
	l (The length of the array.) –

	nfft (The number of points in the fft.) –

	nens (The number of nens to perform (default compute this).) –

	Returns:

	
	step (The step size.)

	nens (The number of ensemble ffts to average together.)

	nfft (The number of points in the fft (set to l if nfft>l).)

	
dolfyn.tools.psd.coherence(a, b, nfft, window='hann', debias=True, noise=(0, 0))

	Computes the magnitude-squared coherence of a and b.

	Parameters:

	
	a (numpy.ndarray) – The first array over which to compute coherence.

	b (numpy.ndarray) – The second array over which to compute coherence.

	nfft (int) – The number of points to use in the fft.

	window (string, np.ndarray (default 'hann')) – The window to use for ffts.

	debias (bool (default: True)) – Specify whether to debias the signal according to Benignus1969.

	noise (tuple(2), or float) – The noise keyword may be used to specify the signals’
noise levels (std of noise in a,b). If noise is a two
element tuple or list, the first and second elements specify
the noise levels of a and b, respectively.
default: noise=(0,0)

	Returns:

	out (|np.ndarray|) – Coherence between a and b

Notes

Coherence is defined as:

\[C_{ab} = \frac{|S_{ab}|^2}{S_{aa} * S_{bb}}\]

Here \(S_{ab}\), \(S_{aa}\) and \(S_{bb}\) are the cross,
and auto spectral densities of the signal a and b.

	
dolfyn.tools.psd.cpsd_quasisync(a, b, nfft, fs, window='hann')

	Compute the cross power spectral density (CPSD) of the
signals a and b.

	Parameters:

	
	a (numpy.ndarray) – The first signal.

	b (numpy.ndarray) – The second signal.

	nfft (int) – The number of points in the fft.

	fs (float) – The sample rate (e.g. sample/second).

	window ({None, 1, ‘hann’, numpy.ndarray}) – The window to use (default: ‘hann’). Valid entries are:
- None,1 : uses a ‘boxcar’ or ones window.
- ‘hann’ : hanning window.
- a length(nfft) array : use this as the window directly.

	Returns:

	cpsd (|np.ndarray|) – The cross-spectral density of a and b.

See also

psd(), coherence(), cpsd(), numpy.fft

Notes

a and b do not need to be ‘tightly’ synchronized, and can even
be different lengths, but the first- and last-index of both series
should be synchronized (to whatever degree you want unbiased
phases).

This performs:

\[fft(a)*conj(fft(b))\]

Note that this is consistent with numpy.correlate().

It detrends the data and uses a minimum of 50% overlap for the
shorter of a and b. For the longer, the overlap depends on the
difference in size. 1-(l_short/l_long) data will be underutilized
(where l_short and l_long are the length of the shorter and longer
series, respectively).

The units of the spectra is the product of the units of a and
b, divided by the units of fs.

	
dolfyn.tools.psd.cpsd(a, b, nfft, fs, window='hann', step=None)

	Compute the cross power spectral density (CPSD) of the
signals a and b.

	Parameters:

	
	a (numpy.ndarray) – The first signal.

	b (numpy.ndarray) – The second signal.

	nfft (int) – The number of points in the fft.

	fs (float) – The sample rate (e.g. sample/second).

	window ({None, 1, ‘hann’, numpy.ndarray}) – The window to use (default: ‘hann’). Valid entries are:
- None,1 : uses a ‘boxcar’ or ones window.
- ‘hann’ : hanning window.
- a length(nfft) array : use this as the window directly.

	step (int) – Use this to specify the overlap. For example:
- step : nfft/2 specifies a 50% overlap.
- step : nfft specifies no overlap.
- step=2*nfft means that half the data will be skipped.
By default, step is calculated to maximize data use, have
at least 50% overlap and minimize the number of ensembles.

	Returns:

	cpsd (|np.ndarray|) – The cross-spectral density of a and b.

See also

psd(), coherence(), None

Notes

cpsd removes a linear trend from the signals.

The two signals should be the same length, and should both be real.

This performs:

\[fft(a)*conj(fft(b))\]

This implementation is consistent with the numpy.correlate
definition of correlation. (The conjugate of D.B. Chelton’s
definition of correlation.)

The units of the spectra is the product of the units of a and
b, divided by the units of fs.

	
dolfyn.tools.psd.psd(a, nfft, fs, window='hann', step=None)

	Compute the power spectral density (PSD).

This function computes the one-dimensional n-point PSD.

The units of the spectra is the product of the units of a and
b, divided by the units of fs.

	Parameters:

	
	a (numpy.ndarray) – The first signal, as a 1D vector

	nfft (int) – The number of points in the fft.

	fs (float) – The sample rate (e.g. sample/second).

	window ({None, 1, ‘hann’, numpy.ndarray}) – The window to use (default: ‘hann’). Valid entries are:
- None,1 : uses a ‘boxcar’ or ones window.
- ‘hann’ : hanning window.
- a length(nfft) array : use this as the window directly.

	step (int) – Use this to specify the overlap. For example:
- step : nfft/2 specifies a 50% overlap.
- step : nfft specifies no overlap.
- step=2*nfft means that half the data will be skipped.
By default, step is calculated to maximize data use, have
at least 50% overlap and minimize the number of ensembles.

	Returns:

	psd (|np.ndarray|) – The power spectral density of a and b.

Notes

Credit: This function’s line of code was copied from JN’s fast_psd.m
routine.

See also

cpsd(), coherence(), None

	
dolfyn.tools.psd.phase_angle(a, b, nfft, window='hann', step=None)

	Compute the phase difference between signals a and b. This
is the complimentary function to coherence and cpsd.

Positive angles means that b leads a, i.e. this does,
essentially:

angle(b) - angle(a)

This function computes one-dimensional n-point PSD.

The angles are output as magnitude = 1 complex numbers (to
simplify averaging). Therefore, use numpy.angle to actually
output the angle.

	Parameters:

	
	a (1d-array_like, the signal. Currently only supports vectors.) –

	nfft (The number of points in the fft.) –

	window (The window to use (default: 'hann'). Valid entries are:) – None,1 : uses a ‘boxcar’ or ones window.
‘hann’ : hanning window.
a length(nfft) array : use this as the window directly.

	step (Use this to specify the overlap. For example:) –
	step=nfft/2 specifies a 50% overlap.

	step=nfft specifies no overlap.

	step=2*nfft means that half the data will be skipped.

By default, step is calculated to maximize data use, have
at least 50% overlap and minimize the number of ensembles.

	Returns:

	ang (complex |np.ndarray| (unit magnitude values))

See also

None, coherence(), cpsd()

	
dolfyn.tools.misc.detrend(arr, axis=-1, in_place=False)

	Remove a linear trend from arr.

	Parameters:

	
	arr (array_like) – The array from which to remove a linear trend.

	axis (int) – The axis along which to operate.

Notes

This method is copied from the matplotlib.mlab library, but
implements the covariance calcs explicitly for added speed.

This works much faster than mpl.mlab.detrend for multi-dimensional
arrays, and is also faster than linalg.lstsq methods.

	
dolfyn.tools.misc.group(bl, min_length=0)

	Find continuous segments in a boolean array.

	Parameters:

	
	bl (numpy.ndarray (dtype=’bool’)) – The input boolean array.

	min_length (int (optional)) – Specifies the minimum number of continuous points to consider a
group (i.e. that will be returned).

	Returns:

	out (np.ndarray(slices,)) – a vector of slice objects, which indicate the continuous
sections where bl is True.

Notes

This function has funny behavior for single points. It will
return the same two indices for the beginning and end.

	
dolfyn.tools.misc.slice1d_along_axis(arr_shape, axis=0)

	Return an iterator object for looping over 1-D slices, along
axis, of an array of shape arr_shape.

	Parameters:

	
	arr_shape (tuple,list) – Shape of the array over which the slices will be made.

	axis (integer) – Axis along which arr is sliced.

	Returns:

	Iterator (object) – The iterator object returns slice objects which slices arrays of
shape arr_shape into 1-D arrays.

Examples

>> out=np.empty(replace(arr.shape,0,1))
>> for slc in slice1d_along_axis(arr.shape,axis=0):
>> out[slc]=my_1d_function(arr[slc])

	
dolfyn.tools.misc.fillgaps(a, maxgap=inf, dim=0, extrapFlg=False)

	Linearly fill NaN value in an array.

	Parameters:

	
	a (numpy.ndarray) – The array to be filled.

	maxgap (numpy.ndarray (optional: inf)) – The maximum gap to fill.

	dim (int (optional: 0)) – The dimension to operate along.

	extrapFlg (bool (optional: False)) – Whether to extrapolate if NaNs are found at the ends of the
array.

See also

	dolfyn.tools.misc.interpgaps
	Linearly interpolates in time.

Notes

This function interpolates assuming spacing/timestep between
successive points is constant. If the spacing is not constant, use
interpgaps.

	
dolfyn.tools.misc.interpgaps(a, t, maxgap=inf, dim=0, extrapFlg=False)

	Fill gaps (NaN values) in a by linear interpolation along
dimension dim with the point spacing specified in t.

	Parameters:

	
	a (numpy.ndarray) – The array containing NaN values to be filled.

	t (numpy.ndarray (len(t) == a.shape[dim])) – Independent variable of the points in a, e.g. timestep

	maxgap (numpy.ndarray (optional: inf)) – The maximum gap to fill.

	dim (int (optional: 0)) – The dimension to operate along.

	extrapFlg (bool (optional: False)) – Whether to extrapolate if NaNs are found at the ends of the
array.

See also

	dolfyn.tools.misc.fillgaps
	Linearly interpolates in array-index space.

	
dolfyn.tools.misc.medfiltnan(a, kernel, thresh=0)

	Do a running median filter of the data. Regions where more than
thresh fraction of the points are NaN are set to NaN.

	Parameters:

	
	a (numpy.ndarray) – 2D array containing data to be filtered.

	kernel_size (numpy.ndarray or list, optional) – A scalar or a list of length 2, giving the size of the median
filter window in each dimension. Elements of kernel_size should
be odd. If kernel_size is a scalar, then this scalar is used as
the size in each dimension.

	thresh (int) – Maximum gap in a to filter over

	Returns:

	out (|np.ndarray|) – 2D array of same size containing filtered data

See also

scipy.signal.medfilt2d

	
dolfyn.tools.misc.convert_degrees(deg, tidal_mode=True)

	Converts between the ‘cartesian angle’ (counter-clockwise from East) and
the ‘polar angle’ in (degrees clockwise from North)

	Parameters:

	
	deg (float or array-like) – Number or array in ‘degrees CCW from East’ or ‘degrees CW from North’

	tidal_mode (bool (default: True)) – If true, range is set from 0 to +/-180 degrees. If false, range is 0 to
360 degrees

	Returns:

	out (float or array-like) – Input data transformed to ‘degrees CW from North’ or
‘degrees CCW from East’, respectively (based on deg)

Notes

The same algorithm is used to convert back and forth between ‘CCW from E’
and ‘CW from N’

ADCP Example

The following example shows a typical workflow for analyzing ADCP data using DOLfYN’s tools.

A typical ADCP data workflow is broken down into 1. Review the raw data - Check timestamps - Calculate/check that the depth bin locations are correct - Look at velocity, beam amplitude and/or beam correlation data quality 2. Remove data located above the water surface or below the seafloor 3. Check for spurious datapoints and remove if necessary 4. If not already done within the instrument, average the data into bins of a set time length (normally 5 to 10 min) 5. Conduct further analysis as
required

Start by importing the necessary DOLfYN tools through MHKiT:

[1]:

Import core DOLfYN functions
import dolfyn
Import ADCP-specific API tools
from dolfyn.adp import api

Read Raw Instrument Data

The core benefit of DOLfYN is that it can read in raw data directly after transferring it off of the ADCP. The ADCP used here is a Nortek Signature 1000, with the file extension ‘.ad2cp’. This specific dataset contains several hours worth of velocity data collected at 1 Hz from the ADCP mounted on a bottom lander in a tidal inlet. The instruments that DOLfYN supports are listed in the docs [https://dolfyn.readthedocs.io/en/latest/about.html].

Start by reading in the raw datafile downloaded from the instrument. The read function reads the raw file and dumps the information into an xarray Dataset, which contains a few groups of variables:

	Velocity in the instrument-saved coordinate system (beam, XYZ, ENU)

	Beam amplitude and correlation data

	Measurements of the instrument’s bearing and environment

	Orientation matrices DOLfYN uses for rotating through coordinate frames.

[2]:

ds = dolfyn.read('../dolfyn/example_data/Sig1000_tidal.ad2cp')

Reading file ../dolfyn/example_data/Sig1000_tidal.ad2cp ...

There are two ways to see what’s in a DOLfYN Dataset. The first is to simply type the dataset’s name to see the standard xarray output. To access a particular variable in a dataset, use dict-style (ds['vel']) or attribute-style syntax (ds.vel). See the xarray docs [http://xarray.pydata.org/en/stable/getting-started-guide/quick-overview.html] for more details on how to use the xarray format.

[3]:

print the dataset
ds

[3]:

<xarray.Dataset>
Dimensions: (time: 55000, dirIMU: 3, dir: 4, range: 28, beam: 4,
 earth: 3, inst: 3, q: 4, time_b5: 55000,
 range_b5: 28, x: 4, x*: 4)
Coordinates:
 * time (time) datetime64[ns] 2020-08-15T00:20:00.500999927 ...
 * dirIMU (dirIMU) <U1 'E' 'N' 'U'
 * dir (dir) <U2 'E' 'N' 'U1' 'U2'
 * range (range) float64 0.6 1.1 1.6 2.1 ... 12.6 13.1 13.6 14.1
 * beam (beam) int32 1 2 3 4
 * earth (earth) <U1 'E' 'N' 'U'
 * inst (inst) <U1 'X' 'Y' 'Z'
 * q (q) <U1 'w' 'x' 'y' 'z'
 * time_b5 (time_b5) datetime64[ns] 2020-08-15T00:20:00.4384999...
 * range_b5 (range_b5) float64 0.6 1.1 1.6 2.1 ... 13.1 13.6 14.1
 * x (x) int32 1 2 3 4
 * x* (x*) int32 1 2 3 4
Data variables: (12/38)
 c_sound (time) float32 1.502e+03 1.502e+03 ... 1.498e+03
 temp (time) float32 14.55 14.55 14.55 ... 13.47 13.47 13.47
 pressure (time) float32 9.713 9.718 9.718 ... 9.596 9.594 9.596
 mag (dirIMU, time) float32 72.5 72.7 72.6 ... -197.2 -195.7
 accel (dirIMU, time) float32 -0.00479 -0.01437 ... 9.729
 batt (time) float32 16.6 16.6 16.6 16.6 ... 16.4 16.4 15.2

 telemetry_data (time) uint8 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
 boost_running (time) uint8 0 0 0 0 0 0 0 0 1 0 ... 0 1 0 0 0 0 0 0 1
 heading (time) float32 -12.52 -12.51 -12.51 ... -12.52 -12.5
 pitch (time) float32 -0.065 -0.06 -0.06 ... -0.06 -0.05 -0.05
 roll (time) float32 -7.425 -7.42 -7.42 ... -6.45 -6.45 -6.45
 beam2inst_orientmat (x, x*) float32 1.183 0.0 -1.183 ... 0.5518 0.0 0.5518
Attributes: (12/33)
 filehead_config: {'CLOCKSTR': {'TIME': '"2020-08-13 13:56:21"'}, 'I...
 inst_model: Signature1000
 inst_make: Nortek
 inst_type: ADCP
 rotate_vars: ['vel', 'accel', 'accel_b5', 'angrt', 'angrt_b5', ...
 burst_config: {'press_valid': True, 'temp_valid': True, 'compass...

 proc_idle_less_3pct: 0
 proc_idle_less_6pct: 0
 proc_idle_less_12pct: 0
 coord_sys: earth
 has_imu: 1
 fs: 1
xarray.Dataset

	

 ADV Example

ADV Example

The following example shows a simple workflow for analyzing ADV data using DOLfYN’s tools.

A typical ADV data workflow is broken down into 1. Review the raw data - Check timestamps - Look at velocity data quality, particularly for spiking 2. Check for spurious datapoints and remove. Replace bad datapoints using interpolation if desired 3. Rotate the data into principal flow coordinates (streamwise, cross-stream, vertical) 4. Average the data into bins, or ensembles, of a set time length (normally 5 to 10 min) 5. Calculate turbulence statistics (turbulence intensity, TKE, Reynolds
stresses) of the measured flowfield

Start by importing the necessary DOLfYN tools:

[1]:

Import core DOLfYN functions
import dolfyn
Import ADV-specific API tools
from dolfyn.adv import api

Read Raw Instrument Data

DOLfYN currently only carries support for the Nortek Vector ADV. The example loaded here is a short clip of data from a test deployment to show DOLfN’s capabilities.

Start by reading in the raw datafile downloaded from the instrument. The dolfyn.read function reads the raw file and dumps the information into an xarray Dataset, which contains three groups of variables:

	Velocity, amplitude, and correlation of the Doppler velocimetry

	Measurements of the instrument’s bearing and environment

	Orientation matrices DOLfYN uses for rotating through coordinate frames.

[2]:

ds = dolfyn.read('../dolfyn/example_data/vector_data01.VEC')

Reading file ../dolfyn/example_data/vector_data01.VEC ...

There are two ways to see what’s in a DOLfYN Dataset. The first is to simply type the dataset’s name to see the standard xarray output. To access a particular variable in a dataset, use dict-style (ds['vel']) or attribute-style syntax (ds.vel). See the xarray docs [http://xarray.pydata.org/en/stable/getting-started-guide/quick-overview.html] for more details on how to use the xarray format.

[3]:

print the dataset
ds

[3]:

<xarray.Dataset>
Dimensions: (x: 3, x*: 3, time: 122912, dir: 3, beam: 3, earth: 3,
 inst: 3)
Coordinates:
 * x (x) int32 1 2 3
 * x* (x*) int32 1 2 3
 * time (time) datetime64[ns] 2012-06-12T12:00:02.968749284 ...
 * dir (dir) <U1 'X' 'Y' 'Z'
 * beam (beam) int32 1 2 3
 * earth (earth) <U1 'E' 'N' 'U'
 * inst (inst) <U1 'X' 'Y' 'Z'
Data variables: (12/15)
 beam2inst_orientmat (x, x*) float64 2.709 -1.34 -1.364 ... -0.3438 -0.3499
 batt (time) float32 13.2 13.2 13.2 13.2 ... nan nan nan nan
 c_sound (time) float32 1.493e+03 1.493e+03 ... nan nan
 heading (time) float32 5.6 10.5 10.51 10.52 ... nan nan nan nan
 pitch (time) float32 -31.5 -31.7 -31.69 ... nan nan nan
 roll (time) float32 0.4 4.2 4.253 4.306 ... nan nan nan nan

 orientation_down (time) bool True True True True ... True True True True
 vel (dir, time) float32 -1.002 -1.008 -0.944 ... nan nan
 amp (beam, time) uint8 104 110 111 113 108 ... 0 0 0 0 0
 corr (beam, time) uint8 97 91 97 98 90 95 95 ... 0 0 0 0 0 0
 pressure (time) float64 5.448 5.436 5.484 5.448 ... 0.0 0.0 0.0
 orientmat (earth, inst, time) float32 0.0832 0.155 ... -0.7065
Attributes: (12/39)
 inst_make: Nortek
 inst_model: Vector
 inst_type: ADV
 rotate_vars: ['vel']
 n_beams: 3
 profile_mode: continuous

 recorder_size_bytes: 4074766336
 vel_range: normal
 firmware_version: 3.34
 fs: 32.0
 coord_sys: inst
 has_imu: 0
xarray.Dataset

	

 Python Module Index

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dolfyn	

 	
 	
 dolfyn.adp.clean	

 	
 	
 dolfyn.adp.turbulence	

 	
 	
 dolfyn.adv.clean	

 	
 	
 dolfyn.adv.motion	

 	
 	
 dolfyn.adv.turbulence	

 	
 	
 dolfyn.binned	

 	
 	
 dolfyn.io.api	

 	
 	
 dolfyn.rotate.api	

 	
 	
 dolfyn.rotate.base	

 	
 	
 dolfyn.time	

 	
 	
 dolfyn.tools.misc	

 	
 	
 dolfyn.tools.psd	

 	
 	
 dolfyn.velocity	

 Index

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (dolfyn.adv.turbulence.ADVBinner method)

A

 	
 	ADPBinner (class in dolfyn.adp.turbulence)

 	
 	ADVBinner (class in dolfyn.adv.turbulence)

 	attrs (dolfyn.velocity.Velocity property)

C

 	
 	C (dolfyn.velocity.VelBinner attribute)

 	calc_acov() (dolfyn.velocity.VelBinner method)

 	calc_coh() (dolfyn.velocity.VelBinner method)

 	calc_csd() (dolfyn.adv.turbulence.ADVBinner method)

 	calc_csd_base() (dolfyn.binned.TimeBinner method)

 	calc_dissipation_LT83() (dolfyn.adp.turbulence.ADPBinner method)

 	calc_dissipation_SF() (dolfyn.adp.turbulence.ADPBinner method)

 	calc_doppler_noise() (dolfyn.adp.turbulence.ADPBinner method)

 	(dolfyn.adv.turbulence.ADVBinner method)

 	calc_dudz() (dolfyn.adp.turbulence.ADPBinner method)

 	calc_dvdz() (dolfyn.adp.turbulence.ADPBinner method)

 	calc_dwdz() (dolfyn.adp.turbulence.ADPBinner method)

 	calc_epsilon_LT83() (dolfyn.adv.turbulence.ADVBinner method)

 	calc_epsilon_SF() (dolfyn.adv.turbulence.ADVBinner method)

 	calc_epsilon_TE01() (dolfyn.adv.turbulence.ADVBinner method)

 	calc_freq() (dolfyn.binned.TimeBinner method)

 	calc_L_int() (dolfyn.adv.turbulence.ADVBinner method)

 	calc_phase_angle() (dolfyn.velocity.VelBinner method)

 	calc_principal_heading() (in module dolfyn.rotate.api)

 	calc_psd() (dolfyn.velocity.VelBinner method)

 	calc_psd_base() (dolfyn.binned.TimeBinner method)

 	calc_shear2() (dolfyn.adp.turbulence.ADPBinner method)

 	
 	calc_stress() (dolfyn.adv.turbulence.ADVBinner method)

 	calc_stress_4beam() (dolfyn.adp.turbulence.ADPBinner method)

 	calc_stress_5beam() (dolfyn.adp.turbulence.ADPBinner method)

 	calc_tilt() (in module dolfyn.rotate.base)

 	calc_tke() (dolfyn.velocity.VelBinner method)

 	calc_total_tke() (dolfyn.adp.turbulence.ADPBinner method)

 	calc_turbulence() (in module dolfyn.adv.turbulence)

 	calc_ustar_fit() (dolfyn.adp.turbulence.ADPBinner method)

 	calc_velacc() (dolfyn.adv.motion.CalcMotion method)

 	calc_velrot() (dolfyn.adv.motion.CalcMotion method)

 	calc_xcov() (dolfyn.velocity.VelBinner method)

 	CalcMotion (class in dolfyn.adv.motion)

 	check_turbulence_cascade_slope() (dolfyn.adp.turbulence.ADPBinner method)

 	(dolfyn.adv.turbulence.ADVBinner method)

 	clean_fill() (in module dolfyn.adv.clean)

 	coherence() (in module dolfyn.tools.psd)

 	convert_degrees() (in module dolfyn.tools.misc)

 	coords (dolfyn.velocity.Velocity property)

 	correct_motion() (in module dolfyn.adv.motion)

 	correlation_filter() (in module dolfyn.adp.clean)

 	cpsd() (in module dolfyn.tools.psd)

 	cpsd_quasisync() (in module dolfyn.tools.psd)

D

 	
 	date2dt64() (in module dolfyn.time)

 	date2epoch() (in module dolfyn.time)

 	date2matlab() (in module dolfyn.time)

 	date2str() (in module dolfyn.time)

 	demean() (dolfyn.binned.TimeBinner method)

 	detrend() (dolfyn.binned.TimeBinner method)

 	(in module dolfyn.tools.misc)

 	do_avg() (dolfyn.velocity.VelBinner method)

 	do_var() (dolfyn.velocity.VelBinner method)

 	
 dolfyn

 	module

 	
 dolfyn.adp.clean

 	module

 	
 dolfyn.adp.turbulence

 	module

 	
 dolfyn.adv.clean

 	module

 	
 dolfyn.adv.motion

 	module

 	
 	
 dolfyn.adv.turbulence

 	module

 	
 dolfyn.binned

 	module

 	
 dolfyn.io.api

 	module

 	
 dolfyn.rotate.api

 	module

 	
 dolfyn.rotate.base

 	module

 	
 dolfyn.time

 	module

 	
 dolfyn.tools.misc

 	module

 	
 dolfyn.tools.psd

 	module

 	
 dolfyn.velocity

 	module

 	dt642date() (in module dolfyn.time)

 	dt642epoch() (in module dolfyn.time)

E

 	
 	E_coh (dolfyn.velocity.Velocity property)

 	epoch2date() (in module dolfyn.time)

 	
 	epoch2dt64() (in module dolfyn.time)

 	euler2orient() (in module dolfyn.rotate.base)

F

 	
 	fill_nan_ensemble_mean() (in module dolfyn.adv.clean)

 	fillgaps() (in module dolfyn.tools.misc)

 	fillgaps_depth() (in module dolfyn.adp.clean)

 	
 	fillgaps_time() (in module dolfyn.adp.clean)

 	find_surface() (in module dolfyn.adp.clean)

 	find_surface_from_P() (in module dolfyn.adp.clean)

G

 	
 	GN2002() (in module dolfyn.adv.clean)

 	
 	group() (in module dolfyn.tools.misc)

I

 	
 	I (dolfyn.velocity.Velocity property)

 	
 	I_tke (dolfyn.velocity.Velocity property)

 	interpgaps() (in module dolfyn.tools.misc)

L

 	
 	load() (in module dolfyn.io.api)

 	
 	load_mat() (in module dolfyn.io.api)

M

 	
 	matlab2date() (in module dolfyn.time)

 	mean() (dolfyn.binned.TimeBinner method)

 	medfilt_orient() (in module dolfyn.adp.clean)

 	medfiltnan() (in module dolfyn.tools.misc)

 	
 module

 	dolfyn

 	dolfyn.adp.clean

 	dolfyn.adp.turbulence

 	dolfyn.adv.clean

 	dolfyn.adv.motion

 	dolfyn.adv.turbulence

 	dolfyn.binned

 	dolfyn.io.api

 	dolfyn.rotate.api

 	dolfyn.rotate.base

 	dolfyn.time

 	dolfyn.tools.misc

 	dolfyn.tools.psd

 	dolfyn.velocity

N

 	
 	nan_beyond_surface() (in module dolfyn.adp.clean)

O

 	
 	orient2euler() (in module dolfyn.rotate.base)

P

 	
 	phase_angle() (in module dolfyn.tools.psd)

 	
 	psd() (in module dolfyn.tools.psd)

 	psd_freq() (in module dolfyn.tools.psd)

Q

 	
 	quaternion2orient() (in module dolfyn.rotate.base)

R

 	
 	range_limit() (in module dolfyn.adv.clean)

 	read() (in module dolfyn.io.api)

 	read_example() (in module dolfyn.io.api)

 	
 	reshape() (dolfyn.adv.motion.CalcMotion method)

 	(dolfyn.binned.TimeBinner method)

 	rotate2() (dolfyn.velocity.Velocity method)

 	(in module dolfyn.rotate.api)

S

 	
 	S (dolfyn.velocity.VelBinner attribute)

 	save() (dolfyn.velocity.Velocity method)

 	(in module dolfyn.io.api)

 	save_mat() (in module dolfyn.io.api)

 	set_declination() (dolfyn.velocity.Velocity method)

 	(in module dolfyn.rotate.api)

 	
 	set_inst2head_rotmat() (dolfyn.velocity.Velocity method)

 	(in module dolfyn.rotate.api)

 	set_range_offset() (in module dolfyn.adp.clean)

 	slice1d_along_axis() (in module dolfyn.tools.misc)

 	spike_thresh() (in module dolfyn.adv.clean)

 	std() (dolfyn.binned.TimeBinner method)

 	stepsize() (in module dolfyn.tools.psd)

T

 	
 	tau (dolfyn.velocity.VelBinner attribute)

 	TimeBinner (class in dolfyn.binned)

 	
 	tke (dolfyn.velocity.VelBinner attribute)

 	(dolfyn.velocity.Velocity property)

U

 	
 	U (dolfyn.velocity.Velocity property)

 	u (dolfyn.velocity.Velocity property)

 	U_dir (dolfyn.velocity.Velocity property)

 	
 	U_mag (dolfyn.velocity.Velocity property)

 	upup_ (dolfyn.velocity.Velocity property)

 	upvp_ (dolfyn.velocity.Velocity property)

 	upwp_ (dolfyn.velocity.Velocity property)

V

 	
 	v (dolfyn.velocity.Velocity property)

 	val_exceeds_thresh() (in module dolfyn.adp.clean)

 	var() (dolfyn.binned.TimeBinner method)

 	variables (dolfyn.velocity.Velocity property)

 	
 	VelBinner (class in dolfyn.velocity)

 	Velocity (class in dolfyn.velocity)

 	vpvp_ (dolfyn.velocity.Velocity property)

 	vpwp_ (dolfyn.velocity.Velocity property)

W

 	
 	w (dolfyn.velocity.Velocity property)

 	
 	wpwp_ (dolfyn.velocity.Velocity property)

_images/ADCP_Example_34_1.png
[S/w] 1A [e3U0ZLOH
S @ °
o S S

12

0.4

02

12

o P
]

[w]apnany

14:00

12:00

08:00 10:00

Time

06:00

04:00

02:00

_images/ADCP_Example_35_1.png
[N an1) woy M B63p] 11 A [eIUOZLIOH

° ° 2 3 ° °
2 H 2] 3 g 2
"]]] 3 E 2

[TN]

12

[w] apningy.

g @ © - ~ °

04:00 06:00 08:00 10:00 12:00 14:00
Time

02:00

_images/ADCP_Example_21_1.png
beam = 1[1]

TR AR \W \‘ |1
I I |

I I H‘ L

© LB a0 &
PO ICE SISO
o o @ @ o
Time [seconds since 1970-01-01
00:00:00]

100

80

60

40

20

Acoustic Signal Correlation
%]

_images/turbulence_torpedo.png

_images/ADV_Example_23_1.png
Energy Density [m2/s%/Hz]

1071

Streamwise Direction

1071

100
Frequency [Hz]

10!

_images/adv_coord_sys3_warr.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the DOLfYN home page

 		
 About

 		
 Instrument Support

 		
 History

 		
 License

 		
 Installation

 		
 Data Files and Test Files

 		
 MATLAB Users

 		
 Testing

 		
 Dependencies

 		
 The Basics

 		
 Reading Source Datafiles

 		
 Subsetting Data

 		
 Data Analysis Tools

 		
 The DOLfYN view

 		
 Metadata

 		
 DOLfYN Attributes

 		
 Rotations & Coordinate Systems

 		
 Orientation Data

 		
 Heading, Pitch, Roll

 		
 DOLfYN-Defined Heading, Pitch, Roll

 		
 Instrument heading, pitch, roll

 		
 Declination Handling

 		
 Principal Heading

 		
 Degree of testing by instrument type

 		
 Motion Correction

 		
 Pre-Deployment Requirements

 		
 Specify metadata in a JSON file

 		
 Data Processing

 		
 Motion Correction Examples

 		
 ADV Motion Correction Ex.1

 		
 ADV Motion Correction Ex.2

 		
 API Documentation

 		
 ADCP Module

 		
 Quick Example

 		
 Cleaning Data

 		
 ADV Module

 		
 Quick Example

 		
 Cleaning Data

 		
 Reading and Loading Data

 		
 read()

 		
 read_example()

 		
 save()

 		
 load()

 		
 save_mat()

 		
 load_mat()

 		
 Rotate Functions

 		
 rotate2()

 		
 calc_principal_heading()

 		
 set_declination()

 		
 set_inst2head_rotmat()

 		
 euler2orient()

 		
 orient2euler()

 		
 quaternion2orient()

 		
 calc_tilt()

 		
 Binning Tools

 		
 Velocity Analysis

 		
 Turbulence Analysis

 		
 Data Shortcuts (Properties)

 		
 Time Conversion

 		
 epoch2dt64()

 		
 dt642epoch()

 		
 date2dt64()

 		
 dt642date()

 		
 epoch2date()

 		
 date2str()

 		
 date2epoch()

 		
 date2matlab()

 		
 matlab2date()

 		
 Tools

 		
 psd_freq()

 		
 stepsize()

 		
 coherence()

 		
 cpsd_quasisync()

 		
 cpsd()

 		
 psd()

 		
 phase_angle()

 		
 detrend()

 		
 group()

 		
 slice1d_along_axis()

 		
 fillgaps()

 		
 interpgaps()

